\(A=\sqrt{3}-\sqrt{x^2-4x+4}\)  tại \(x=\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2022

\(x=\sqrt{7+4\sqrt{3}}\)

\(x=\sqrt{4+4\sqrt{3}+3}\)

\(x=\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(x=2+\sqrt{3}\)

Ta có ;

A=\(\sqrt{3}-\sqrt{x^2-4x+4}\)

A=\(\sqrt{3}-\sqrt{\left(x-2\right)^2}\)

Thay x vào A ta có 

A=\(\sqrt{3}-\sqrt{\left(2+\sqrt{3}-2\right)^2}\)

A=\(\sqrt{3}-\sqrt{\left(\sqrt{3}\right)^2}\)

A=\(\sqrt{3}-\sqrt{3}\)

A=0

Vậy A=0 <=>x=\(\sqrt{7+4\sqrt{3}}\)

 

24 tháng 8 2020

mình giúp bài 3 cho 

\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\left(ĐKXĐ:x\ge5\right)\)

\(< =>\sqrt{25\left(x-5\right)}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=6\)

\(< =>\sqrt{25}.\sqrt{x-5}-3\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=6\)

\(< =>5.\sqrt{x-5}-3.\frac{\sqrt{x-5}}{3}-\frac{1}{3}.3.\sqrt{x-5}=6\)

\(< =>5.\sqrt{x-5}-\sqrt{x-5}-\sqrt{x-5}=6\)

\(< =>3\sqrt{x-5}=6< =>\sqrt{x-5}=2\)

\(< =>x-5=4< =>x=4+5=9\left(tmđk\right)\)

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)

6 tháng 9 2019

a) x=49

b) x=4

c) x = 2 hoặc x = -2

d) x= 11,17355372

e) x =10

f) x=2

g)x = 10 000 000 ( nếu theo đề của bạn) và x=0,94 ( nếu theo đề bđ)

h) x =4

k) x = 4/3 hoặc x = -2/3

l) x = 2,5

m) x = 0,5

n) x=-0,5

6 tháng 9 2019

lưu ý: n) nếu theo đề bd thì: x= -1,5 hoặc x=2,5

9 tháng 9 2016

\(C=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)

\(C^2=\left(\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\right)^2\)

\(C^2=x^2+2\sqrt{x^2-1}-2\sqrt{\left(x^2+2\sqrt{x^2-1}\right)\left(x^2-2\sqrt{x^2-1}\right)}+x^2-2\sqrt{x^2-1}\)

\(C^2=2x^2-2\sqrt{x^4-2x^2\sqrt{x^2-1}+2x^2\sqrt{x^2-1}-\left(2\sqrt{x^2-1}\right)^2}\)

\(C^2=2x^2-2\sqrt{x^4-4\left(x^2-1\right)}\)

\(C^2=2x^2-2\sqrt{x^4-4x^2+4}\)

\(C=\sqrt{2x^2-2\sqrt{x^4-4x^2+4}}\) 

Thay: \(x=\sqrt{5}\) vào C, ta có:

\(C=\sqrt{2\sqrt{5}^2-2\sqrt{\sqrt{5}^4-4\sqrt{5}^2+4}}\)

\(C=\sqrt{10-2\sqrt{25-20+4}}\)

\(C=\sqrt{10-2\sqrt{9}}\)

\(C=\sqrt{10-6}\)

\(C=\orbr{\begin{cases}-2\\2\end{cases}}\)

Mà theo bài ra: \(\sqrt{x^2+2\sqrt{x^2-1}}>\sqrt{x^2-2\sqrt{x^2-1}}\)

\(\Rightarrow\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}>0\)

\(\Rightarrow C=2\)

9 tháng 9 2016

Đề câu a là \(4\sqrt{5}a\) hay \(4\sqrt{5a}\) . Thấy \(4\sqrt{5}a\) đúng hơn
 

17 tháng 8 2016

A) ĐKXĐ : \(x\ge0\) và \(x\ne4\)

Rút gọn :\(A=\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{4\sqrt{x}}{4-x}\)

            \(A=\frac{2\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{2+\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

            \(A=\frac{4-2\sqrt{x}+2+\sqrt{x}+4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

            \(A=\frac{6+3\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

           \(A=\frac{3\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

           \(A=\frac{3}{2-\sqrt{x}}\)

b) thay \(x=7+4\sqrt{3}\) vào A 

ta được :\(A=\frac{3}{2-\sqrt{7+4\sqrt{3}}}=\frac{3}{2-2+\sqrt{3}}=\frac{3}{\sqrt{3}}\)

vậy vói \(x=7+4\sqrt{3}\) thì \(A=\frac{3}{\sqrt{3}}\)

c)với\(x\ge0\) và \(x\ne4\)

Để \(A=-\frac{3}{7}\Leftrightarrow\frac{3}{2-\sqrt{x}}=-\frac{3}{7}\)

                        \(\Leftrightarrow3.7=-3\left(2-\sqrt{x}\right)\)

                         \(\Leftrightarrow21=-6+3\sqrt{x}\)

                          \(\Leftrightarrow21+6=3\sqrt{x}\)

                           \(\Leftrightarrow27=3\sqrt{x}\)

                            \(\Leftrightarrow\sqrt{x}=9\)

                           \(\Leftrightarrow x=81\)

Vậy để\(A=-\frac{3}{7}\Leftrightarrow x=81\)

2 tháng 8 2020

em mới lớp 6-7 nên em sẽ giải theo kiểu lớp 6 là

2 tháng 8 2020

em ko biết giải khó quá trời