Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+3\left(x+y\right)-3\left(x^2+2xy+y^2\right)+2016\)
\(=\left(x+y\right)^3+3\left(x+y\right)-3\left(x+y\right)^2+2016\)
\(=21^3+3.21-3.21^2+2016\)
\(=\left(21-1\right)^3+2017=8000+2017=10017\)
Mình không viết lại đề nha ~
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+\left(3y+3x\right)+\left(3x^2+6xy+3y^2\right)+2016\)
\(E=\left(x+y\right)^3+3\left(x+y\right)+3\left(x+y\right)^2+2016\)
\(E=\left(x+y\right)[\left(x+y\right)^2+3+\left(x+y\right)]+2016\)
\(E=21\left(21^2+3+21\right)+2016\)
\(E=21.465+2016\)
\(E=9765+2016=11781\)
x2 + y2 + z2 = xy + 3y + 2z - 4
<=> 4x2 + 4y2 + 4z2 = 4xy + 12y + 8z - 16
<=> (4x2 - 4xy + y2) + (3y2 - 12y + 12) + (4z2 - 8z + 4) = 0
<=> (2x - y)2 + 3(y - 2)2 + (2z - 2)2 = 0
Dấu = xảy ra khi
\(\hept{\begin{cases}2x-y=0\\y-2=0\\2z-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)
a, \(\frac{xy+3y}{xy}=\frac{y\left(x+3\right)}{xy}=\frac{x+3}{x}\)
b, \(\frac{x^2+3x-y^2-3y}{x^2-y^2}=\frac{\left(x^2-y^2\right)+3\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x-y\right)\left(x+y+3\right)}{\left(x-y\right)\left(x+y\right)}\)
=\(\frac{x+y+3}{x+y}=1\frac{3}{x+y}\)
c, \(\frac{-3x+3y}{x-y}=\frac{-3\left(x-y\right)}{x-y}=-3\)
Có :
\(\left(x+y\right)^2=11^2\)
\(x^2+y^2+2xy=121\)
\(x^2+y^2=121-2.21=121-42=79\)
\(\Rightarrow3x^2+3y^2=3\left(x^2+y^2\right)=3.79=237\)
Ta có : \(\left(x+y\right)^2=x^2+2xy+y^2=x^2+2.21+y^2=11^2=121\)
\(\Rightarrow x^2+y^2=121-2.21=79\)
\(\Rightarrow3x^2+3y^2=3\left(x^2+y^2\right)=3.79=237\)
Vậy \(3x^2+3y^2=237\)