Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
\(A=\sqrt{9-6\sqrt{7}+7}+\sqrt{3-2\sqrt{21}+7}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=3-\sqrt{7}+\sqrt{7}-\sqrt{3}\)
\(=3-\sqrt{3}\)
bài 2 nhé, bài 1 không biết làm.
cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))
+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương
- nhắm đến hằng đẳng thức số 1 và số 2.
+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối
* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)
=> ta sẽ phân tích số hạng chứa căn để tìm A và B
+ nhẩm bằng máy tính, tìm 2 số hạng:
thử lần lượt các trường hợp, lấy vd là câu c)
\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)
\(\Rightarrow AB=6\sqrt{5}\)
- đầu tiên xét đơn giản với B là căn 5 => A= 6
\(A^2+B^2=36+5=41\) (41 khác 29 => loại)
- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)
tương ứng A= 2; B = 3 căn 5
\(A^2+B^2=4+45=49\) (loại)
- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)
Tương ứng A= 3 ; B= 2 căn 5
\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)
Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)
+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:
\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)
sau đó bạn làm tương tự như 2 câu mẫu bên dưới
* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối
a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)
\(A=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{3+2\sqrt{2}}\)
\(A=\sqrt{2}-1-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(A=\sqrt{2}-1-\sqrt{2}-1=-2\)
B = \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
\(B=\sqrt{6+2\sqrt{5}-\sqrt{29-6\sqrt{20}}}\)
B = \(\sqrt{6+2\sqrt{5}-\sqrt{\left(3-\sqrt{20}\right)^2}}\)
\(B=\sqrt{6+2\sqrt{5}-2\sqrt{5}+3}\)
\(B=\sqrt{9}=3\)
\(A=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=\sqrt{1}=1\)
\(A=\sqrt[3]{8-\sqrt{60}}+\sqrt[3]{8+\sqrt{60}}\) xem lại đề con này
\(A=\frac{2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{4+2\sqrt{3}}}{2\left(\sqrt{3}+1\right)}=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
\(a)\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-1=1\)
\(b)\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{33-2.3.\sqrt{4}.\sqrt{6}}\)
\(=3-\sqrt{6}+\sqrt{33-2.3.\sqrt{24}}\)
\(=3-\sqrt{6}+\sqrt{\left(\sqrt{24}-3\right)^2}\)
\(=3-\sqrt{6}+\sqrt{24}-3\)
\(=\sqrt{24}-\sqrt{6}\)
\(=\sqrt{6}\left(2-1\right)=\sqrt{6}\)
\(c)\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
\(=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}\)
\(=\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{4}}+\sqrt{\frac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\frac{3-\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}\)
\(=\frac{6}{2}=3\)
\(d)\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)
\(=\frac{24}{2}=12\)
a)\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{1}=1}\)
b) \(B=\sqrt{\sqrt{3}-\sqrt{1+\sqrt{21-6\sqrt{12}}}=\sqrt{\sqrt{3}-\sqrt{1+\sqrt{\left(3-2\sqrt{3}\right)^2}}}}=\sqrt{\sqrt{3}-\sqrt{2\sqrt{3}-2}}\)c)
\(C=\sqrt{7+3\sqrt{5}}+\sqrt{3-\sqrt{5}}=\frac{\sqrt{14+6\sqrt{5}}+\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\frac{2+2\sqrt{5}}{\sqrt{2}}=\sqrt{2}+\sqrt{10}=\sqrt{2}\left(\sqrt{5}+1\right)\)