Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x = 81 vào A ta có:
\(A=\dfrac{4\sqrt{81}}{\sqrt{81}-5}=\dfrac{4\cdot9}{9-5}=\dfrac{4\cdot9}{4}=9\)
b) \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x\ne1;x\ge0\right)\)
\(B-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
c) \(\dfrac{A}{B}< 4\) khi
\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\dfrac{\sqrt{x}}{\sqrt{x}+2}< 4\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-5}< 4\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+8-4\left(\sqrt{x}-4\right)}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\dfrac{24}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\sqrt{x}-5< 0\)
\(\Leftrightarrow x< 25\)
Kết hợp với đk:
\(0\le x< 5\)
\(\frac{3}{\sqrt{7}-1}+\frac{3}{\sqrt{7}+1}=\frac{3\left[\sqrt{7}+1+\sqrt{7}-1\right]}{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}=\frac{6\sqrt{7}}{6}=\sqrt{7}\)
\(\frac{3}{\sqrt{X}-1}-\frac{2}{\sqrt{X}+1}+\frac{X-7}{X-1}=\frac{3\left(\sqrt{X}+1\right)-2\left(\sqrt{X}-1\right)+X-7}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{X+\sqrt{X}-2}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{\sqrt{X}+2}{\sqrt{X}+1}\)
TÍNH GIÁ TRỊ BIỂU THỨC:
\(\frac{3}{\sqrt{7}-1}\) + \(\frac{3}{\sqrt{7}+1}\)= \(\frac{3\left(\sqrt{7}+1\right)+3\left(\sqrt{7}-1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\)= \(\frac{3\sqrt{7}+3+3\sqrt{7}-3}{6}\)=\(\frac{6\sqrt{7}}{6}\)=\(\sqrt{7}\)
RÚT GỌN BIỂU THỨC:
\(\frac{3}{\sqrt{X}-1}\)-\(\frac{2}{\sqrt{X}+1}\)+\(\frac{X-7}{X-1}\)
= \(\frac{3\left(\sqrt{X}+1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)-\(\frac{2\left(\sqrt{X}-1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)+\(\frac{X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)
= \(\frac{3\sqrt{X}+3-2\sqrt{X}+2+X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)
= \(\frac{X+\sqrt{X}-2}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)
= \(\frac{\left(\sqrt{X}+1\right)\left(\sqrt{X}-2\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)
= \(\frac{\sqrt{X}-2}{\sqrt{X}-1}\)
CHÚC EM HỌC TỐT!
Rút gọn các biểu thức sau với x≥0x≥0:
a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)
b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28
=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28
=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)
\(=-5\sqrt{3x}+27\)
\(a,P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right)\left(dkxd:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{\sqrt{x}.\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-2}{\sqrt{x}}\)
\(b,x=4+2\sqrt{3}\Rightarrow P=\dfrac{\left(4+2\sqrt{3}\right)-2}{\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{2\sqrt{3}+4-2}{\sqrt{\sqrt{3}^2+2\sqrt{3}+1}}\)
\(=\dfrac{2\sqrt{3}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{\left|\sqrt{3}+1\right|}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)
a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{x-1}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-2}{\sqrt{x}}\)
b: Khi x=4+2căn 3 thì \(P=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=2\)
1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
2)
a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:
\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)
`a)A=[2\sqrt{3}+2-2\sqrt{3}+2]/[(2\sqrt{3}-2)(2\sqrt{3}+2)]`
`A=4/[12-4]=1/2`
Với `x > 0,x ne 1` có:
`B=[x-2\sqrt{x}+1]/[\sqrt{x}(\sqrt{x}-1)]`
`B=[(\sqrt{x}-1)^2]/[\sqrt{x}(\sqrt{x}-1)]=[\sqrt{x}-1]/\sqrt{x}`
`b)B=2/5A`
`=>[\sqrt{x}-1]/\sqrt{x}=2/5 . 1/2`
`<=>5\sqrt{x}-5=\sqrt{x}`
`<=>\sqrt{x}=5/4`
`<=>x=25/16` (t/m)
a) \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}=\left|\sqrt{7}-4\right|-2\sqrt{7}=4-\sqrt{7}-2\sqrt{7}=4-3\sqrt{7}\)
b) \(\sqrt{\left(\sqrt{5}-3\right)^2}-\sqrt{75}=\left|\sqrt{5}-3\right|-5\sqrt{3}=3-\sqrt{5}-5\sqrt{3}\)
Giải bsif toán tổng hợp
Vào Fx gõ cẩn thận ra