Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)
\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)
\(\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(8^2-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-64\right)\)
\(=\left(1^1+2^2+3^3+4^4+2022^{2022}\right).0\)
\(=0\)
ta có
A = (1/2+1)(1/3+1)..........(1/99+1)=3/2.4/3.5/4......100/99 ( dùng tính chất rút gọn phân số ta sẽ rút gọn tử sủa phân số trước với mẫu phân sô sau ta đc bỉu thức )
=100/2 = 50 chúc bn hc tốt ^_^
a: \(A=\dfrac{2}{15}+\dfrac{13}{15}-\dfrac{1}{4}-\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{1}{2}\)
b: =5,4(-3,6-6,4)
=5,4*(-10)
=-54
1+2+4+8+16+32+64+128+256+512+1024+2048
=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024
=1+10+20+160+320+2560+1024
=4095
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095
k nha công chúa nụ cười =_= ^_^
A = ( 1 - \(\dfrac{1}{2}\) ) + ( 1 - \(\dfrac{1}{4}\)) + ( 1 - \(\dfrac{1}{8}\)) +......+ ( 1 - \(\dfrac{1}{512}\)) + ( 1 - \(\dfrac{1}{1024}\))
A = (1 + 1 +....+ 1) - ( \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + ......+ \(\dfrac{1}{512}\) + \(\dfrac{1}{1024}\))
A = ( 1 + 1 +.....+ 1) - ( \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\)+....+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\))
Vì trong tổng A có 10 phân số nên
nhóm ( 1 + 1 +....+ 1) có 10 hạng tử là 1
Vậy A = 1 \(\times\) 10 - ( \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +..........+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\))
Đặt B = \(\dfrac{1}{2^1}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) +......+ \(\dfrac{1}{2^9}\) + \(\dfrac{1}{2^{10}}\)
2 \(\times\) B = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\)+........+ \(\dfrac{1}{2^9}\)
2B - B = 1 - \(\dfrac{1}{2^{10}}\)
B = 1 - \(\dfrac{1}{2^{10}}\)
A = 10 + 1 - \(\dfrac{1}{2^{10}}\)
A = 11 - \(\dfrac{1}{2^{10}}\)
em cảm ơn