Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)
=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)
Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):
\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)
\(\Rightarrow\) \(x-y=0\)
\(\Rightarrow\left(x-y\right)^3=0^3=0\)
\(1;\)Từ \(\left(a+b\right)=-7\Rightarrow\left(a+b\right)^3=-343\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-343\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-343\)
\(\Rightarrow a^3+b^3=-343-3.6.\left(-7\right)=-217\)
\(x^2+y^2=\left(x+y\right)^2-2xy=7^2-2.10=29\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3.10.7=133\)
\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)
\(=7.29.133=26999\)
1.Theo đầu bài ta có:
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)
\(=\left(x^2+2x\right)+\left(y^2-2y\right)-2xy\)
\(=\left(x^2+y^2-2xy\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)^2+2\left(x-y\right)\)
Do x - y = 7 nên:
\(=7^2+2\cdot7\)
\(=49+14\)
\(=63\)
Bài 2. Câu 1:
Đặt A = x2 + y2. Khi đó:
\(A-2xy=x^2+y^2-2xy\)
\(\Rightarrow A-2xy=\left(x-y\right)^2\)
Do xy = 4 ; x - y = 3 nên:
\(\Rightarrow A-2\cdot4=3^2\)
\(\Rightarrow A-8=9\)
\(\Rightarrow A=17\)
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
1) x3 + y3 = ( x + y )3 - 3xy( x + y ) = 125 - 90 = 35
2) E = 2( a + b )( a2 - ab + b2 ) - 3a2 - 3b2 = 2a2 - 2ab + 2b2 - 3a2 - 3b2 = -( a + b )2 = -1
ta có: x2+y2
=> (x+y)^2-2xy
=>15^2-2(-100)
=>225+200
=>425