Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{z\left[4\left(4-y-z\right)+yz\right]}\)
\(=\sqrt{x\left[4\left(x+\sqrt{xyz}\right)+yz\right]}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=2x+\sqrt{xyz}\)
Tương tự ta có: \(\sqrt{y\left(4-z\right)\left(4-z\right)}=2y+\sqrt{xyz}\)
Và: \(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)
Từ trên:
\(\Rightarrow T=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}\)
\(=2\left(x+y+z+\sqrt{xyz}\right)\)
\(=8\)
\(x+y+z=2\sqrt{x-34}+4\sqrt{y-21}+6\sqrt{z-4}+45\)
ĐK: \(x\ge34;y\ge21;z\ge4\)
\(pt\Leftrightarrow x-34-2\sqrt{x-34}+1+y-21-4\sqrt{y-21}+4+z-4-6\sqrt{z-4}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-34}-1\right)^2+\left(\sqrt{y-21}-2\right)^2+\left(\sqrt{z-4}-3\right)^2=0\left(1\right)\)
Dễ Thấy: \(VT_{\left(1\right)}\ge0\) nên dấu "=" khi
\(\hept{\begin{cases}\sqrt{x-34}=1\\\sqrt{y-21}=2\\\sqrt{z-4}=3\end{cases}}\)
Giải tiếp rồi thay vào T
\(A\le\sqrt{3\left(x+y+y+z+z+x\right)}=\sqrt{6\left(x+y+z\right)}\le\sqrt{6.\sqrt{3\left(x^2+y^2+z^2\right)}}=\sqrt{6\sqrt{3}}\)
\(A_{max}=\sqrt{6\sqrt{3}}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Do \(x^2+y^2+z^2=1\Rightarrow0\le x;y;z\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow x+y+z\ge x^2+y^2+z^2=1\)
\(A^2=2\left(x+y+z\right)+2\sqrt{\left(x+y\right)\left(x+z\right)}+2\sqrt{\left(x+y\right)\left(y+z\right)}+2\sqrt{\left(y+z\right)\left(z+x\right)}\)
\(A^2=2\left(x+y+z\right)+2\sqrt{x^2+xy+yz+zx}+2\sqrt{y^2+xy+yz+zx}+2\sqrt{z^2+xy+yz+zx}\)
\(A^2\ge2\left(x+y+z\right)+2\sqrt{x^2}+2\sqrt{y^2}+2\sqrt{z^2}=4\left(x+y+z\right)\ge4\)
\(\Rightarrow A\ge2\)
\(A_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị
\(a,P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right)\left(dkxd:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{\sqrt{x}.\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-2}{\sqrt{x}}\)
\(b,x=4+2\sqrt{3}\Rightarrow P=\dfrac{\left(4+2\sqrt{3}\right)-2}{\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{2\sqrt{3}+4-2}{\sqrt{\sqrt{3}^2+2\sqrt{3}+1}}\)
\(=\dfrac{2\sqrt{3}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{\left|\sqrt{3}+1\right|}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)
a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{x-1}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-2}{\sqrt{x}}\)
b: Khi x=4+2căn 3 thì \(P=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=2\)
Phân tích cái trên thành hằng đẳng thức bậc 2 là đc, tìm ra x;y;z rồi thay vào M
làm rõ ra cho tớ được không? Không hiểu sao tớ phân tích không ra :((
T=2017-1