\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

Ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

\(Q=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+10}\)

\(Q=\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+....+\frac{1}{\frac{10.\left(10+1\right)}{2}}\)

\(Q=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{10.11}{2}}\)

\(Q=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)

\(\frac{1}{2}Q=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)

\(\frac{1}{2}Q=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

=>\(Q=\frac{9}{22}.2=\frac{9}{11}\)

10 tháng 5 2016

 

\(Q=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\\ \Rightarrow\frac{1}{2}Q=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)

Tiếp theo tự tính nhéhahaToán lớp 6

5 tháng 5 2016

\(\frac{2x+1}{3}=\frac{5}{2}\)

\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)

2x=  15/2 - 1 = 13/2

x = 13/2 : 2

x = 13/4 

b) 2x + 2x+1 + 2x+2 + 2x+3 = 480

2x.(1+ 2 +22 + 23) = 480

2x . 15 = 480

2x = 480 : 15 = 32

2x = 25 => x = 5

c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)

\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)

\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)

< = > 3x=  -6 => x = -2

 

5 tháng 5 2016

Hỏi đáp Toán

a: \(=\dfrac{17}{4}-\dfrac{37}{100}+\dfrac{1}{8}-\dfrac{32}{25}-\dfrac{5}{2}+\dfrac{7}{2}\)

\(=\dfrac{35}{8}+\dfrac{8}{8}-\dfrac{37}{100}-\dfrac{128}{100}\)

\(=\dfrac{43}{8}-\dfrac{165}{100}=\dfrac{149}{40}\)

b: \(=\left(\dfrac{22\cdot26+3\cdot10-65}{130}\right):\left(\dfrac{4\cdot22-2\cdot26+3\cdot143}{286}\right)\)

\(=\dfrac{537}{130}\cdot\dfrac{286}{465}=\dfrac{1969}{775}\)

1 tháng 8 2016

\(=\frac{\frac{5}{11.2}+\frac{3}{13}-\frac{1}{2}}{\frac{4}{13}-\frac{1}{11}+\frac{3}{2}}=\frac{5}{\frac{2}{4}}=\frac{5}{\frac{1}{2}}\)

1 tháng 8 2016

bn giải bài rõ ràng hưn giùm mk cái nha

15 tháng 8 2016

Thiếu đề

hik như x=2010

3 tháng 1 2017

Ta có :

(x+1)/2009 + (x+2)/2008 = (x+3)/2007 + (x+4)/2006
<=> (x+1)/2009 + 1 + (x+2)/2008 + 1 = (x+3)/2007 +1 + (x+4)/2006 + 1
<=> (x+2010)/2009 + (x+2010)/2008 = (x+2010)/2007 + (x+2010)/2006
<=> (x + 2010).[ 1/2009 + 1/2008 - 1/2007 - 1/2006 ] = 0
<=> x = -2010

30 tháng 8 2016

2. \(\frac{1995.1994-1}{1993.1995+1994}=\frac{1995.\left(1993+1\right)-1}{1993.1995+1994}=\frac{1995.1993+1995-1}{1993.1995+1994}=\frac{1995.1993+1994}{1993.1995+1994}\)

7 tháng 10 2016

1. \(\frac{4}{3.7}+\frac{5}{7.12}+\frac{1}{12.13}+\frac{7}{13.20}+\frac{3}{20.23}\) 

\(=\frac{7-3}{3.7}+\frac{12-7}{7.12}+\frac{13-12}{12.13}+\frac{23-20}{20.23}\) 

\(=\left[\frac{7}{3.7}-\frac{3}{3.7}\right]+\left[\frac{12}{7.12}-\frac{7}{7.12}\right]+\left[\frac{13}{12.13}-\frac{12}{12.13}\right]+\left[\frac{20}{13.20}-\frac{13}{13.20}\right]+\left[\frac{23}{20.23}-\frac{20}{20.23}\right]\) \(=\left[\frac{1}{3}-\frac{1}{7}\right]+\left[\frac{1}{7}-\frac{1}{12}\right]+\left[\frac{1}{12}-\frac{1}{13}\right]+\left[\frac{1}{13}-\frac{1}{20}\right]+\left[\frac{1}{20}-\frac{1}{23}\right]\) \(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}\) \(=\frac{1}{3}-\frac{1}{23}\\ =\frac{20}{69}\)

31 tháng 7 2016

Có: \(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

=>a=1; b=2 ; c=3 ; d=4

31 tháng 7 2016

\(\frac{30}{43}=\frac{1}{\frac{43}{30}}\)

     \(=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)

     \(=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)

Vậy a = 1 ; b = 2 ; c = 3 ; d = 4

20 tháng 3 2017

\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)

\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)

\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)

\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)

20 tháng 3 2017

Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)

\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)

\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)

\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)

\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)

\(\Rightarrow A=\dfrac{36}{49}\)