K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2022

bằng 0 nha bạn

tick cho mình

10 tháng 1 2022

\(D=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)=\dfrac{4}{1.3}.\dfrac{9}{2.4}...\dfrac{2019.2021+1}{2019.2021}=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{2020.2020}{2019.2021}=\left(\dfrac{2}{1}.\dfrac{3}{2}...\dfrac{2020}{2019}\right).\left(\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}\right)=2020.\dfrac{2}{2021}=\dfrac{4040}{2021}\)

14 tháng 5 2017

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).........................\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{100}-1\right)\)

\(A=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right)\left(\dfrac{1}{4}-\dfrac{4}{4}\right)................\left(\dfrac{1}{99}-\dfrac{99}{99}\right)\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)

\(A=\left(\dfrac{-1}{2}\right)\left(\dfrac{-2}{3}\right)\left(\dfrac{-3}{4}\right)...................\left(\dfrac{-98}{99}\right)\left(\dfrac{-99}{100}\right)\)

\(A=\dfrac{\left(-1\right)\left(-2\right)\left(-3\right).........................\left(-98\right)\left(-99\right)}{2.3.4....................98.99.100}\)

\(A=\dfrac{-1}{100}\)

14 tháng 5 2017

Ta có

A = \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{99}-1\right).\left(\dfrac{1}{100}-1\right)\)(99 thừa số)

A = \(\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}....\dfrac{-98}{99}.\dfrac{-99}{100}\)

A = \(\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)....\left(-98\right).\left(-99\right).\left(-100\right)}{2.3.4....98.99.100}\)

A = \(\dfrac{\left(-1\right).\left(-1\right).\left(-1\right)....\left(-1\right)}{1.1.1...1.1.1}\) (100 số -1, 99 số 1)

A = \(\dfrac{-1}{1.1.1.1...1.1.1}\)

A = \(\dfrac{-1}{1}\)

A = -1

Vậy A = -1

1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)

2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)

\(\Leftrightarrow\dfrac{2}{3}x+\dfrac{4}{3}-\dfrac{5}{4}x+\dfrac{5}{4}=\dfrac{15}{2}-\dfrac{3}{2}x-\dfrac{3}{2}\left(2x+3\right)\)

\(\Leftrightarrow x\cdot\dfrac{-7}{12}+\dfrac{31}{12}=\dfrac{-15}{2}x+3\)

=>83/12x=5/12

hay x=5/83

9 tháng 3 2017

A = 1 -2 + 22 - 23 + 24 - 25 + ... + 22008

2A = 2 .(1 -2 + 22 -23 +24 -25 +...+ 22008)

2A = 2 - 22 + 23 - 2 4+ 25 - 26 + ... + 22009

2A-A= ( 2 -22+23-24+25-26+...+22009) - (1-2+22-23+24-25+...+22008​)

A = (2-2) + (-22+22) + ..... + ( 22008 - 22008) + ( 22009 - 1)

A = 0 + 0 + ... + 0 + 22009 -1

A = 22009 - 1

21 tháng 4 2023

Biến đổi thừa số tổng quát: \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).

Do đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\)\(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\)\(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\),..., \(1+\dfrac{1}{2018.2020}=\dfrac{2019^2}{2018.2020}\)\(1+\dfrac{1}{2019.2021}=\dfrac{2020^2}{2019.2021}\). Từ đó suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{2019.2021}\right)\) 

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}.\dfrac{6^2}{5.7}...\dfrac{2019^2}{2018.2020}.\dfrac{2020^2}{2019.2021}\)

\(=\dfrac{2.2020}{2021}=\dfrac{4040}{2021}\)

13 tháng 7 2017

Bài 1:

\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)

\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)

\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)

\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)

\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)

\(=\dfrac{168}{89}\)