Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)
\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)
\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)
\(P=\frac{37}{60}\)
\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)
\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)
\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)
\(Q=\frac{1044}{4375}\)
\(\left(1+\frac{1}{1}\right).\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).\left(1+\frac{1}{5}\right).\left(1+\frac{1}{6}\right)\)
\(=2.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}.\frac{7}{6}\)
\(=\frac{2.3.4.5.6.7}{2.3.4.5.6}=7\)
\(P=\left(\dfrac{-1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{6}:2\)
\(=\left(\dfrac{1}{2}+\dfrac{3}{5}\right):3+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=\dfrac{11}{10}\cdot\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{22}{60}+\dfrac{15}{60}=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-\dfrac{126}{125}\right)\cdot\dfrac{7}{4}:\left[\dfrac{-119}{36}\cdot\dfrac{36}{17}\right]\)
\(=\dfrac{-116}{125}\cdot\dfrac{7}{4}:\left(-7\right)\)
\(=\dfrac{116}{125}\cdot\dfrac{7}{4}\cdot\dfrac{1}{7}=\dfrac{29}{125}\)
=\(-\frac{6}{5}\).\(\frac{-7}{6}\).\(\frac{-8}{7}\).\(\frac{-9}{8}\).\(\frac{-10}{9}\).\(\frac{-11}{10}\)
=\(\frac{7}{5}\).\(\frac{9}{7}\).\(\frac{11}{9}\)
=\(\frac{11}{5}\)
\(=\frac{-6}{5}\times\frac{-7}{6}\times\frac{-8}{7}\times\frac{-9}{8}\times\frac{-10}{9}\times\frac{-11}{10}\)
\(=\frac{\left(-6\right).\left(-7\right).\left(-8\right).\left(-9\right).\left(-10\right).\left(-11\right)}{5.6.7.8.9.10}\)
\(=\frac{6\times7\times8\times9\times10\times11}{5\times6\times7\times8\times9\times10}\)
Triệt tiêu các thừa số bằng nhau ở tử và mẫu, ta có kết quả là \(\frac{11}{5}\)