Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x}{2}=\frac{y}{7}\)và \(x-2y=\left(-24\right)\)
\(\Rightarrow\frac{x}{2}-\frac{2y}{7\cdot2}=\frac{x-2y}{2-14}=\frac{-24}{-12}=2\)
\(\Rightarrow\)\(\frac{x}{2}=2\Rightarrow x=4\)
\(\Rightarrow\frac{y}{7}=2\Rightarrow y=14\)
mấy câu còn lại tương tự
mik giải câu c) thôi nha
c) Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{-1}{-1}=1\)
Do đó :
\(\frac{x}{2}=1=>x=1.2=2\)
\(\frac{y}{5}=1=>x=1.5=5\)
Vậy x = 2, y = 5
a,\(A=x^2-2x+\frac{1}{x-1}\)
\(A=x^2-2x+1-\frac{x-2}{x-1}\)
\(A=\left(x-1\right)^2+\frac{-\left(x-2\right)}{x-1}\ge\frac{-\left(x-2\right)}{x-1}\)
Do \(x-2>x-1\Rightarrow-\left(x-2\right)< x-1\)
Mà \(\frac{-\left(x-2\right)}{x-1}\ge-1\)
Vậy Min A = -1 <=> x = 1
bn rảnh vc
thế giới tồn tại loại rảnh và xàm l như bn cx tốt :)
cảm ơn về chuyên mục của chúa PaiN nhá :))
ta đã tốn thời gian để share cách giải toán cho những thằng ngu như bạn ? bạn phải biết ơn chứ ?
nếu bạn biết rồi thì biến okay
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
Ta có: \(\dfrac{x}{y}=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{2}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=2k\end{matrix}\right.\)
Ta có: \(H=\dfrac{2x-3y}{x-5y}\)
\(=\dfrac{2\cdot3k-3\cdot2k}{3k-5\cdot2k}=\dfrac{6k-6k}{3k-10k}=0\)
Ta có: xy=32xy=32
⇔x3=y2⇔x3=y2
Đặt x3=y2=kx3=y2=k
⇔{x=3ky=2k⇔{x=3ky=2k
Ta có: H=2x−3yx−5yH=2x−3yx−5y
=2⋅3k−3⋅2k3k−5⋅2k=6k−6k3k−10k=0