\(\frac{45}{19}-\left(\frac{1}{2}+\left(\frac{1}{4}\right)^{-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

\(\frac{45}{19}-\left(\frac{1}{2}+\left(\frac{1}{4}\right)^{-1}\right)^{1-1}\)

\(=\frac{45}{19}-\left(\frac{1}{2}+4\right)^{-2}\)

\(=\frac{45}{19}-\left(\frac{9}{2}\right)^{-2}\)

\(=\frac{45}{19}-\frac{4}{81}=\frac{3569}{1539}\)

12 tháng 8 2018

\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)

Nhận thấy:  \(\left|2x+1\right|\ge0\);     \(\left|x+y-\frac{1}{2}\right|\ge0\)

=>   \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)

Dấu "=" xảy ra  <=>  \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

đến đây bạn thay x,y tìm đc vào A để tính nhé

22 tháng 2 2020

Trl:

Đặt giá trị biểu thức là A , ta có :

\(A=\frac{0,5+0,\left(3\right)-0,1\left(6\right)}{2,5+1,\left(6\right)-0,8\left(3\right)}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{6}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{6}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{6}}{5\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{6}\right)}=\frac{1}{5}\)

Nguồn : mạng

28 tháng 3 2019

TH1: Nếu a+b+c \(\ne0\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=1\)

mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=2\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=2\)

Vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=8\)

TH2 : Nếu a+b+c = 0

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

        \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=0\)

mà \(\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1=1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=1\)

vậy \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=1\)

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

TH1: a+b+c=0 

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\Rightarrow B=\left(1-\frac{a+c}{a}\right).\left(1-\frac{b+c}{c}\right).\left(1-\frac{a+b}{b}\right)=-1\)

TH2: a+b+c khác 0

 \(\Rightarrow a=b=c\Rightarrow B=\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right).\left(1+\frac{a}{a}\right)=2^3=8\)

1 tháng 3 2016

giúp với mình sắp nạp rồi

21 tháng 7 2016

tớ cũng đang học cái đấy nè

     225^10

a = _________  = 3^10

      75^10

       2^15 * 3^8             2^15 * 3^8

c=  _____________= --------------------  =2^3 * 3^5

      2^3 * 3^3 * 2^9       2^12 * 3^3

21 tháng 7 2016

tớ có 1 bài giống y cậu nè

7 tháng 9 2016

\(B=9-\left|x-\frac{1}{2}\right|\)

Vì : \(-\left|x-\frac{1}{2}\right|\le9\)

=> \(9-\left|x-\frac{1}{2}\right|\le9\)

Vậy GTLN của B là 9 khi \(x=\frac{1}{2}\)

7 tháng 9 2016

Ta có : \(\left|x-\frac{1}{2}\right|\ge0\Rightarrow-\left|x-\frac{1}{2}\right|\le0\Rightarrow9-\left|x-\frac{1}{2}\right|\le9\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Max B = 9 <=> x = 1/2