Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: P(1)=2+1-1=2
P(1/4)=2*1/16+1/4-1=-5/8
b: P(1)=1^2-3*1+2=0
=>x=1 là nghiệm của P(x)
P(2)=2^2-3*2+2=0
=>x=2 là nghiệm của P(x)
Bài 1:
a, \(\dfrac{-x-2}{3}\) = - \(\dfrac{6}{7}\)
- \(x\) - 2 = - \(\dfrac{18}{7}\)
\(x\) = - 2 + \(\dfrac{18}{7}\)
\(x\) = - \(\dfrac{4}{7}\)
Bài b, \(\dfrac{4}{7-x}\) = \(\dfrac{1}{3}\)
12 = 7 - \(x\)
\(x\) = 7 - 12
\(x\) = -5
Đề là như thế này phải không bạn \(2x^4+3x^2y^2+y^4+y^2\)
Giải
\(2x^4+3x^2y^2+y^4+y^2\)
\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=\left(x^2+y^2\right)+\left(2x^2+y^2\right)+y^2\)\(=\left(x^2+y^2\right)+\left(x^2+x^2+y^2\right)+y^2\)(*)
Thay x2 +y2 =1 vào (*), ta có :
\(=1+1+x^2+y^2\)
\(=1+1+1=3\)
1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)
Vậy đề sai ~v (hay là tui làm sai ta)
\(b)B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
Dùng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)\(\forall\)\(x\)
\(\Rightarrow\)\(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)
\(\Rightarrow\)\(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)\(\forall\)\(x\)
Hay \(B\ge\frac{3}{4}\)\(\forall\)\(x\)
Dấu "=" xảy ra khi :
\(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN của \(B=\frac{3}{4}\)đạt được khi \(x=\frac{1}{2}\)
\(A=\left|x+\frac{3}{2}\right|\ge0\)
\(MinA=0\Rightarrow\left|x+\frac{3}{2}\right|=0\Rightarrow x=\frac{-3}{2}\)
\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
\(B\ge\frac{3}{4}\)do\(\left|x-\frac{1}{2}\right|\ge0\)
\(MinB=\frac{3}{4}\Rightarrow\left|x-\frac{1}{2}\right|=0\Rightarrow x=\frac{1}{2}\)