K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

Xài trò này chắc Oke :))

a)

Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p

\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)

\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)

\(=1267\)

b)

\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)

Ta tính \(x^5+y^5\) theo S và P

Dễ có:

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)

\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)

\(=S^5-5S^3P+2SP^2-S^2P\)

Chắc không nhầm lẫn gì ở việc tính toán =)))