Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2x + 2xy = 2x.(1 + y)
|x| = 2,5 => x = 2,5 hoặc x = -2,5
+) x = 2,5
=> A = 2 . 2,5 . (1 - 3/4) = 5 . 1/4 = 5/4
+) x = -2,5
=> A = 2 . (-2,5) . (1 - 3/4) = -5 . 1/4 = -5/4
Vậy A = 5/4 hoặc A = -5/4 với |x| = 2,5; y = -3/4.
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)
\(=2x^2-10xy+8y-2x^2-14xy\)
\(=10xy+8y-14xy\)
\(=-4xy+8y\)
\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)
\(=-4.\frac{-1}{2}+6\)
\(=2+6=8\)
\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)
\(=-2y-2xy\)
thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có
\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)
nếu có sai bn thông cảm
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-3y-4xy+8y-2x^2+3y+4xy\)
\(=-2y-2xy\)
Thay x,y ta có:
\(-2y-2xy=-2\left(\frac{3}{4}\right)-2\left(\frac{-2}{3}.\frac{3}{4}\right)\)
\(-2y-2xy=\frac{-3}{2}-2.\frac{-1}{2}\)
\(-2y-2xy=\frac{-3}{2}-\left(-1\right)\)
\(-2y-2xy=\frac{-3}{2}+1=\frac{-3}{2}+\frac{2}{2}=\frac{-1}{2}\)
Vậy biểu thức trên có giá trị bằng \(\frac{-1}{2}\)
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
A= (3,1 - 2,5) - (-2,5 + 3,1)
=3.1-2.5+2.5-3.1
=0
B= (5,3 - 2,8) - (4 + 5,3)
=5.3 - 2.8-4-5.3
= -6.8
C= -(251.3 + 281) + 3.251 - (1-281)
=-251.3-281+3.251-1+281
=-1
D= -(3/5+3/4)−(−3/4+2/5)
= -3/5-3/4+3/4-2/5
= -5/5
=-1
\(A=\left(3,1-2,5\right)-\left(-2,5+3,1\right)=3,1-2,5+2,5-3,1=0\)
\(B=\left(5,3-2,8\right)-\left(4+5,3\right)=5,3-2,8-4-5,3=-6,8\)
\(C=-\left(215\cdot3+281\right)+3\cdot215-\left(1-281\right)=-215\cdot3-281+3\cdot215-1+281=1\)
\(D=-\left(\frac{3}{5}+\frac{3}{4}\right)-\left(-\frac{3}{4}+\frac{2}{5}\right)=-\frac{3}{5}-\frac{3}{4}+\frac{3}{4}-\frac{2}{5}=-1\)
A = 2x + 2xy = 2x.(1 + y)
|x| = 2,5 => x = 2,5 hoặc x = -2,5
+) x = 2,5
=> A = 2 . 2,5 . (1 - 3/4) = 5 . 1/4 = 5/4
+) x = -2,5
=> A = 2 . (-2,5) . (1 - 3/4) = -5 . 1/4 = -5/4
Vậy A = 5/4 hoặc A = -5/4 với |x| = 2,5; y = -3/4.
A= 2x (2,5 ) + 2x2,5 x ( -3/4)
A= 5/4