Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) thay x=\(\frac{-1}{3}\) vào biểu thức A ta có:
A=\(5.\left(\frac{-1}{3}\right)^3-3.\left(\frac{-1}{3}\right)^2-\frac{1}{3}\)
=\(5.\frac{-1}{27}-3.\frac{1}{9}+\frac{1}{3}\)
=\(\frac{-5}{27}-\frac{3}{9}+\frac{1}{3}\)
=\(\frac{-14}{27}+\frac{1}{3}\)
=\(\frac{-5}{27}\)
a) Thay giá trị x vào biểu thức , ta có :
\(A=5.\left(-\frac{1}{3}\right)^3-3.\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{3}\right)\)
\(A=5.\left(-\frac{1}{27}\right)-3.\frac{1}{9}+\frac{1}{3}\)
\(A=-\frac{5}{27}-\frac{1}{3}+\frac{1}{3}\)
\(A=-\frac{14}{27}+\frac{1}{3}\)
\(A=-\frac{5}{27}\)
b) Thay giá trị x vào biểu thức , ta có :
\(3.\left(-\frac{2}{3}\right)^2+5.\left(-\frac{2}{3}\right)^3\)
\(=3.\frac{4}{9}+5.\left(-\frac{8}{27}\right)\)
\(=\frac{4}{3}+\left(-\frac{40}{27}\right)\)
\(=-\frac{4}{27}\)
1)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)
A = \(\frac{1}{1}-\frac{1}{101}\)
A = \(\frac{100}{101}\)
Vậy A = \(\frac{100}{101}\)
B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}.\frac{100}{101}\)
B = \(\frac{250}{101}\)
Vậy B = \(\frac{250}{101}\)
2)
Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản
Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ...
a) \(2x-\frac{2}{3}-7x=\frac{3}{2}-1\\ 2x-7x-\frac{2}{3}=\frac{1}{2}\\ -5x=\frac{1}{2}+\frac{2}{3}\\ -5x=\frac{7}{6}\\ x=\frac{7}{6}:\left(-5\right)\\ x=\frac{-7}{30}\)Vậy \(x=\frac{-7}{30}\)
b) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\\ \frac{3}{2}x-\frac{1}{3}x=\frac{2}{5}-\frac{1}{4}\\ \frac{7}{6}x=\frac{3}{20}\\ x=\frac{3}{20}:\frac{7}{6}\\ x=\frac{9}{70}\)Vậy \(x=\frac{9}{70}\)
c) \(\frac{2}{3}-\frac{5}{3}x=\frac{7}{10}x+\frac{5}{6}\\ \frac{2}{3}-\frac{5}{6}=\frac{7}{10}x+\frac{5}{3}x\\ \frac{-1}{6}=\frac{71}{30}x\\ x=\frac{-1}{6}:\frac{71}{30}\\ x=\frac{-5}{71}\)Vậy \(x=\frac{-5}{71}\)
d) \(2x-\frac{1}{4}=\frac{5}{6}-\frac{1}{2}x\\ 2x+\frac{1}{2}x=\frac{5}{6}+\frac{1}{4}\\ \frac{5}{2}x=\frac{13}{12}\\ x=\frac{13}{12}:\frac{5}{2}\\ x=\frac{13}{30}\)Vậy \(x=\frac{13}{30}\)
e) \(3x-\frac{5}{3}=x-\frac{1}{4}\\ 3x-x=\frac{5}{3}-\frac{1}{4}\\ 2x=\frac{17}{12}\\ x=\frac{17}{12}:2\\ x=\frac{17}{24}\)Vậy \(x=\frac{17}{24}\)
Èo, chăm thế? Chăm hơn cả mik cơ, gần 11 h rồi onl thì thấy bài được bạn HISI làm hết rồi :((
a) Thay x=\(-\frac{1}{3}\) vào A ta được
A=\(5\cdot\left(-\frac{1}{3}\right)^3-3\cdot\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{3}\right)\)
\(=5\cdot\left(-\frac{1}{27}\right)-3\cdot\frac{1}{9}+\frac{1}{3}\)
\(=-\frac{5}{27}\)
b) \(3x^2+5x^3=x^2\left(3+5x\right)\)
Thay x=\(\frac{-2}{3}\) vào biểu thức ta có
\(x^2\left(3+5x\right)=\left(-\frac{2}{3}\right)^2\cdot\left(3+5\cdot\frac{-2}{3}\right)=\frac{4}{9}\cdot\frac{-1}{3}=-\frac{4}{27}\)