Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4-x^3+2x^3-2x^2+x^3-x^2+2x^2-2x+6x^2-6x+12x-12\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+x^2\left(x-1\right)+2x\left(x-1\right)+6x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x^3+ 2x^2+x^2+2x+6x+12\right)\left(x-1\right)\)
\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)-24\)
\(=x^4+x^3+2x^3+2x^2+3x^3+3x^2+6x^2+6x+4x^3+4x^2+8x^2+8x+12x^2+12x+24x+24\)
\(=x^4+5x^3+5x^3+5x^2+10x^2+50x\)
\(=x^2\left(x^2+5x\right)+5x\left(x^2+5x\right)+10\left(x^2+5x\right)\)
\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\).
Bài 1:
a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)^2+2.2\left(x^2+x\right)+4-16\)
=\(\left(x^2+x+2\right)^2-4^2\)
=\(\left(x^2+x-2\right)\left(x^2+x+6\right)\)
b,\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
=\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) (1)
Đặt \(x^2+5x+5=a\) thay vào (1) đc:
(1) = \(\left(a-1\right)\left(a+1\right)-24=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
Bài 2:
\(a,n^2+4n+3=n^2+n+3n+3\)
\(=n(n+1)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)Đặt \(n=2k+1\)
\(\Rightarrow\left(n+1\right)\left(n+3\right)=\left(2k+2\right)\left(2k+4\right)\)
Mà tích của 2 số nguyên chẵn liên tiếp thì chia hết chia hết cho 8
\(\Rightarrowđpcm\)
b,\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)\(=\left(n+3\right)\left(n^2-1\right)\)\(=\left(n+3\right)\left(n+1\right)\left(n-1\right)\)
Mà 48 = 24.3
Đặt \(n=2k+1\) thì
(1) = \(\left(2k+4\right)\left(2k+2\right)2k\)
Tích của 3 số nguyên chẵn liên tiếp thì chia hết cho 16 (I)
Tích của số chẵn liên tiếp thì có một số là bội của 3 (II)
(I);(II)\(\Rightarrow\)đpcm
c,512 = 29
\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)\(=(n^4-1)\left(n^8-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n^4+1\right)\)Đặt \(n=2k+1\) thay vào đc:
\(2k\left(2k+2\right)\left(4k^2+4k+2\right)2k\left(2k+2\right)\).
\(\left(4k^2+4k+2\right)\left(16k^4+32k^3+24k^2+8k+2\right)\)Bạn tự chứng minh tiếp nhá!!
\(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right)=\frac{a^2-1}{a^2-a}=\frac{a+1}{a}\)
ở phàn a+/a thiếu số 1 nhé
\(\frac{1}{a+1}+\frac{2}{a^2-1}=\frac{a-1+2}{a^2-1}=\frac{1}{a-1}\)
=> K =\(\frac{a^2-1}{a}\)
đkxđ: a khác +-1
b, thay vào mà tình
a/ \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)
\(=\frac{a^2-1}{a\left(a-1\right)}:\frac{a-1+2}{\left(a-1\right)\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}.\frac{\left(a-1\right)\left(a+1\right)}{a-1}\)
\(=\frac{a+1}{a}.a+1\)
\(=\frac{\left(a+1\right)^2}{a}\)
b, Thay a=1/2
\(\Rightarrow\frac{\left(\frac{1}{2}+1\right)^2}{\frac{1}{2}}=\frac{\frac{9}{4}}{\frac{1}{2}}=\frac{9}{2}\)
a) Ta có: A = x2 - 4x + 7
A = (x2 - 4x + 4) + 3
A = (x - 2)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MinA = 3 <=> x = 2
b) Xem lại đề
a(a + 2) + b(b - 2) - 2ab
= a2 + 2a + b2 - 2b - 2ab
= (a2 - 2ab + b2) +(2a - 2b)
= (a - b)2 + 2(a - b)
= 72 + 2.7
= 49 + 14 =63
\(a\left(a+2\right)+b\left(b-2\right)-2ab=a^2+2a+b^2-2b-2ab\)
\(=\left(a^2-2ab+b^2\right)+\left(2a-2b\right)=\left(a-b\right)^2+2\left(a-b\right)\)
Với \(a-b=7\)thì biểu thức có giá trị là: \(7^2-7=49-7=42\)
a,ĐK : \(a\ne\pm1\)
\(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)
\(=\left(\frac{a^2}{a\left(a-1\right)}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{a-1}{\left(a+1\right)\left(a-1\right)}+\frac{2}{\left(a+1\right)\left(a-1\right)}\right)\)
\(=\left(\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}\right):\left(\frac{a+1}{\left(a+1\right)\left(a-1\right)}\right)\)
\(=\frac{a+1}{a}.\frac{a-1}{1}=\frac{a^2-1}{a}\)
b, Thay a = 1/2 ta được :
\(K=\frac{\left(\frac{1}{2}\right)^2-1}{\frac{1}{2}}=\frac{\frac{1}{4}-1}{\frac{1}{2}}=\frac{-\frac{3}{4}}{\frac{1}{2}}=-\frac{3}{8}\)
theo mk đề bài phải là như này A=a(a+2)+b(b-2)-2ab
A=a2+2a+b2-2b-2ab
A=(a2-2ab+b2)+(2a-2b)
A=(a-b)2+2(a-b)
A=(a-b)(a-b+2)
thay a-b=17 vào A ta được
A=17(17+2)=17.19=323
vậy a-b =17 thì A có giá trị là 323