Tính giá trị biểu thức:

a) A =...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)\(\left(đkcđ:x\ne\pm3;x\ne-\frac{1}{2}\right)\)

\(=\left(\frac{\left(x-1\right).\left(x-3\right)+2.\left(x+3\right)-\left(x^2+3\right)}{x^2-9}\right):\left(\frac{2x-1-\left(2x+1\right)}{2x+1}\right)\)

\(=\frac{x^2-4x+3+2x+6-x^2-3}{x^2-9}:\frac{-2}{2x+1}\)

\(=\frac{-2x-6}{x^2-9}.\frac{2x+1}{-2}\)

\(=\frac{-2\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}.\frac{2x+1}{-2}\)

\(=\frac{2x+1}{x-3}\)

b)\(\left|x+1\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}\\x+1=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(koTMđkxđ\right)\\x=-\frac{3}{2}\left(TMđkxđ\right)\end{cases}}}\)

thay \(x=-\frac{3}{2}\)  vào P tâ đc:   \(P=\frac{2x+1}{x-3}=\frac{2.\left(-\frac{3}{2}\right)+1}{-\frac{3}{2}-3}=\frac{4}{9}\)

c)ta có:\(P=\frac{x}{2}\Leftrightarrow\frac{2x+1}{x-3}=\frac{x}{2}\)

\(\Rightarrow2.\left(2x+1\right)=x.\left(x-3\right)\)

\(\Leftrightarrow4x+2=x^2-3x\)

\(\Leftrightarrow x^2-7x-2=0\)

\(\Leftrightarrow x^2-2.\frac{7}{2}+\frac{49}{4}-\frac{57}{4}=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{57}{4}=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{57}}{2}\right).\left(x-\frac{7}{2}+\frac{\sqrt{57}}{2}\right)\)

bạn tự giải nốt nhé!!

d)\(x\in Z;P\in Z\Leftrightarrow\frac{2x+1}{x-3}\in Z\Leftrightarrow\frac{2x-6+7}{x-3}=2+\frac{7}{x-3}\in Z\)

\(2\in Z\Rightarrow\frac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

bạn tự làm nốt nhé

9 tháng 3 2022

a, \(\left(\dfrac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{2x-1-2x-1}{2x+1}\right)\)

\(=\dfrac{-2x+6}{\left(x+3\right)\left(x-3\right)}:\dfrac{-2}{2x+1}=\dfrac{-2\left(x-3\right)\left(2x+1\right)}{-2\left(x+3\right)\left(x-3\right)}=\dfrac{2x+1}{x+3}\)

b, \(\left|x+1\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}-1\\x=-\dfrac{1}{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktmđk\right)\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x = -3/2 ta được \(\dfrac{2\left(-\dfrac{3}{2}\right)+1}{-\dfrac{3}{2}+3}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\)

26 tháng 11 2017

a)  M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2) 

   = 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)

   = 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4

   = -22x - 55 =  -11(2x + 5)

b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)

b)  M = -11(2x + 5) = 0

\(\Rightarrow\)2x + 5 = 0

\(\Rightarrow\)x = \(\frac{-5}{2}\)

26 tháng 11 2017

Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)

b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)

\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)

c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)

Vậy \(x=\frac{-5}{2}\) 

11 tháng 12 2018

a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)

11 tháng 12 2018

Bạn có thể giúp mình 2 câu còn lại dc kh ạ 

Bài 1:

a) Để phân thức \(\frac{2}{x-3}\) có giá trị nguyên thì \(2⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(2\right)\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{4;2;5;1\right\}\)(tm)

Vậy: \(x\in\left\{4;2;5;1\right\}\)

b) Để phân thức \(\frac{3}{x+2}\) có giá trị nguyên thì \(3⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(3\right)\)

\(\Leftrightarrow x+2\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{-1;-3;1;-5\right\}\)(tm)

Vậy: \(x\in\left\{-1;-3;1;-5\right\}\)

c) *Đặt phép chia:

Violympic toán 8Để phân thức \(\frac{x^4-3x^2+5}{x-3}\)nhận giá trị nguyên thì số dư chia hết cho số chia

hay \(59⋮x-3\)

\(\Leftrightarrow x-3\inƯ\left(59\right)\)

\(\Leftrightarrow x-3\in\left\{1;-1;59;-59\right\}\)

\(\Leftrightarrow x\in\left\{4;2;62;-56\right\}\)(tm)

Vậy: \(x\in\left\{4;2;62;-56\right\}\)

d)

*Đặt phép chia:

Violympic toán 8*Để phân thức \(\frac{2x^3+x^2+2x+8}{2x+1}\) nhận giá trị nguyên thì số dư chia hết cho số chia

hay \(6⋮2x+1\)

\(\Leftrightarrow2x+1\inƯ\left(6\right)\)

\(\Leftrightarrow2x+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

\(\Leftrightarrow x\in\left\{0;-1;\frac{1}{2};\frac{-3}{2};1;-2;\frac{5}{2};\frac{-7}{2}\right\}\)

mà x∈Z

nên \(x\in\left\{0;-1;1;-2\right\}\)

Vậy: \(x\in\left\{0;-1;1;-2\right\}\)

Bài 2:

a) Ta có: \(\frac{3x^2-x}{9x^2-6x+1}\)

\(=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)(1)

Thay x=-8 vào biểu thức (1), ta được

\(\frac{-8}{3\cdot\left(-8\right)-1}=\frac{-8}{-25}=\frac{8}{25}=0,32\)

Vậy: 0,32 là giá trị của biểu thức \(\frac{3x^2-x}{9x^2-6x+1}\) tại x=-8

b) Ta có: \(\frac{x^2+3x+2}{x^3+2x^2-x-2}\)

\(=\frac{x^2+2x+x+2}{x^2\left(x+2\right)-\left(x+2\right)}=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x+1}{x^2-1}=\frac{x+1}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x-1}\)(2)

Thay x=1000001 vào biểu thức (2), ta được

\(\frac{1}{1000001-1}=\frac{1}{1000000}\)

Vậy: \(\frac{1}{1000000}\) là giá trị của biểu thức \(\frac{x^2+3x+2}{x^3+2x^2-x-2}\) tại x=1000001

24 tháng 2 2020

a, ĐKXĐ : \(x-1\ne0\)

=> \(x\ne1\)

TH1 : \(x-2\ge0\left(x\ge2\right)\)

=> \(\left|x-2\right|=x-2=1\)

=> \(x=3\left(TM\right)\)

- Thay x = 3 vào biểu thức P ta được :

\(P=\frac{3+2}{3-1}=\frac{5}{2}\)

TH2 : \(x-2< 0\left(x< 2\right)\)

=> \(\left|x-2\right|=2-x=1\)

=> \(x=1\left(KTM\right)\)

Vậy giá trị của P là \(\frac{5}{2}\) .

24 tháng 2 2020

a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)

Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)

Thay \(x=3\) vào P, ta có:

\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)

Vậy P = 5 tại x = 3.

b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)

\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)

3 tháng 12 2018

thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)

Bài 2 :

a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)

\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)

\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{8}{5}\)

=> giá trị của B ko phụ thuộc vào biến x

3 tháng 12 2018

bài 1

=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)

=\(\left(2x+1+2x-1\right)^2\)

=\(\left(4x\right)^2\)

=\(16x^2\)

Tại x=100 thay vào biểu thức trên ta có:

16*100^2=1600000