Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=3^2=9\)
A=-9,4+2,7+5,4+7,3
A=(2,7+7,3)+5,4-9,4
A=10+5,4-9,4
A=15,4-9,4
A=6
\(2\cdot\left|-21\right|-3\cdot\left|125\right|-5\cdot\left|-33\right|-\left|2\cdot21\right|\)
\(=2\cdot21-3\cdot125-5\cdot33-2\cdot21\)
\(=-3\cdot125-5\cdot33=-375-165=-540\)
a) |-137| + |-363|=137 + 363 = 500;
b) |-28| - |98| = 28 – 98 = -(98 – 28) = - 70;
c) (-200) - |-25|.|3| = (-200) – 25 . 3 = (-200) – 75 = -(200 + 75) = -275
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
\(A=\dfrac{7}{3}+\dfrac{5}{7}+\dfrac{2}{3}-\dfrac{7}{12}+\dfrac{5}{2}=3+\dfrac{221}{84}=\dfrac{473}{84}\)
a)\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{3^{15}.\left(5^2\right)^{15}}=\frac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5=243\)
b) \(\frac{2^{15}\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)