K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

(3.42.27)2:(32.220)

= ( 3.24.27)2 : (32.220)

= (3.211):(32.220)

= 32.222:(32.220)

=22 = 4

chúc bn hc tốt

6 tháng 10 2019

\(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.11}{5.7}=\frac{22}{35}\)

Chúc em học tốt nhé!

Bài này chỉ cần dùng phương pháp trực tiêu là xong rồi nhé!

Các bài sau em làm tương tự thôi nha!

6 tháng 10 2019

\(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.11}{5.7}=\frac{22}{35}\)

9 tháng 10 2017

=0 nhé bạn

9 tháng 10 2017

0 nha bn 

DD
2 tháng 6 2021

Ta sẽ chứng minh \(1+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)(*).

Với \(n=1\)thì: \(\frac{1\left(1+1\right)\left(2.1+1\right)}{6}=1\)do đó (*) đúng với \(n=1\).

GIả sử (*) đúng với \(n=k\ge1\), tức là \(1+2^2+3^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\).

Ta sẽ chứng minh (*) đúng với \(n=k+1\), tức là \(1+2^2+3^2+...+k^2+\left(k+1\right)^2=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\).

Thật vậy, ta có: 

\(1+2^2+3^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\frac{6\left(k+1\right)^2}{6}\)

\(=\frac{\left(k+1\right)\left(2k^2+k+6k+6\right)}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Suy ra (*) đúng với \(n=k+1\).

Theo nguyên lí quy nạp toán học, (*) đúng với \(n\inℕ\).

Vậy \(1+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\).

2 tháng 6 2021

Ta có A = 1.1 + 2.2 + 3.3 + ... + n.n 

= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + n.(n + 1 - 1) 

= 1.2 + 2.3 + 3.4 + .... + n.(n + 1) - (1 + 2 + 3 + ... + n) 

= 1.2 + 2.3 + 3.4 + .... + n.(n + 1) - n(n + 1) : 2

Đặt B = 1.2 + 2.3 + 3.4 + .... + n(n + 1)

=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + n.(n + 1).3

= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + n.(n + 1).[(n + 2) - (n - 1)]

= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

= n(n + 1)(n + 2)

=> B = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Khi đó \(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}=n\left(n+1\right)\left(\frac{n+2}{3}-\frac{1}{2}\right)\)

\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

12 tháng 4 2017

a) Để â nhận giá trị nguyên

\(\Rightarrow8n-9⋮2n+5\)

\(\Rightarrow8n+20-29⋮2n+5\)

\(\Rightarrow4.\left(2n+5\right)-29⋮2n+5\)

\(4.\left(2n+5\right)⋮2n+5\)

\(\Rightarrow-29⋮2n+5\)

\(\Rightarrow2n+5\inƯ\left(-29\right)\)

tự làm nốt nhé, tick nha

12 tháng 4 2017

khó quá!!!Bó tay...Sorry

16 tháng 12 2015

(1+[-3])+(5+[-7])+...+(97+[-99])+101

= (-2) +(-2)+..+(-2)+101

=(-2).25+101

=-50+101

=51

tick đấy

 

21 tháng 1 2018

\(F=\left|x\right|+\left|x+2\right|=\left|-x\right|+\left|x+2\right|\ge\left|-x+x+2\right|=2\)(Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\))Dấu "=" xảy ra \(\Leftrightarrow-x\left(x+2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}-x\ge0\\x+2\ge0\end{cases}}\\\hept{\begin{cases}-x\le0\\x+2\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\le0\\x\ge-2\end{cases}\Rightarrow x=0;-1;-2}\\\hept{\begin{cases}x\ge0\\x\le-2\end{cases}\Rightarrow x\in\varnothing}\end{cases}}\)

Vậy x = 0;-1;-2

21 tháng 1 2018

cái chỗ giải -x(x+2) >=0 bạn tự giải làm 2 trường hợp: (-x>=0 và x+2>=0) hoặc (-x<=0 và x+2<=0)

22 tháng 3 2023

\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{3}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)