K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

tất cả rút \(\frac{1}{2}\) ra ngoài ta có :

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

đến đây thì dễ rồi tự làm tiếp đi , ko hiểu thì hỏi nha

18 tháng 4 2016

cái này bn đặt làm hiệu sẽ ra ngay thôi!

28 tháng 4 2017

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(4A=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101.4}=\frac{25}{101}\)

28 tháng 4 2017

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)

\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(4A=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101}:4=\frac{25}{101}\)

6 tháng 5 2017

\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\cdot\frac{5^2}{5\cdot6}=\frac{1^2}{1\cdot6}=\frac{1}{6}\)

lan sau nho ghi de cho dung nha bn

6 tháng 5 2017

\(\frac{1.1.2.2.3.3.4.4.5.5}{1.2.2.3.3.4.4.5.5.6}\)=\(\frac{\left(1.2.3.4.5\right).\left(1.2.3.4.5\right)}{\left(1.2.3.4.5\right)\left(2.3.4.5.6\right)}=\frac{1}{6}\)

11 tháng 5 2020

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}=\frac{5}{6}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)

8 tháng 3 2022

sưả đề \(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)

21 tháng 1 2022

làm chi tiết đc ko ạ