Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính giá trị biểu thức\(1+\frac{1}{10}+1+\frac{1}{11}+1+\frac{1}{12}+1+\frac{1}{13}+1+\frac{1}{14}\)
\(A\)\(=\)\(\frac{1}{9}\)\(-\)\(\frac{1}{10}\)\(+\)\(\frac{1}{10}\)\(-\)\(\frac{1}{11}\)\(+\)\(\frac{1}{11}\)\(-\)\(\frac{1}{12}\)\(+\)\(\frac{1}{12}\)\(-\)\(\frac{1}{13}\)\(+\)\(\frac{1}{13}\)\(-\)\(\frac{1}{14}\)\(+\)\(\frac{1}{14}\)\(-\)\(\frac{1}{15}\)
\(A\)\(=\)\(\frac{1}{9}\)\(-\)\(\frac{1}{15}\)
\(A\)\(=\)\(\frac{2}{45}\)
\(A=\left(\frac{1}{9}.\frac{1}{10}+\frac{1}{10}.\frac{1}{11}\right)+\left(\frac{1}{11}.\frac{1}{12}+\frac{1}{12}.\frac{1}{13}\right)+\left(\frac{1}{13}.\frac{1}{14}+\frac{1}{14}.\frac{1}{15}\right)\)
Sau đó nhân phân phối ra là xong nhé bạn
\(A=\dfrac{5}{11}.\dfrac{5}{7}+\dfrac{5}{11}.\dfrac{2}{7}+\dfrac{6}{11}=\dfrac{5}{11}\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}=\dfrac{5}{11}.1+\dfrac{6}{11}=\dfrac{5}{11}+\dfrac{6}{11}=\dfrac{11}{11}=1\)
\(B=\dfrac{3}{13}.\dfrac{6}{11}+\dfrac{3}{13}.\dfrac{9}{11}-\dfrac{3}{13}.\dfrac{4}{11}=\dfrac{3}{13}\left(\dfrac{6}{11}+\dfrac{9}{11}-\dfrac{4}{11}\right)=\dfrac{3}{13}.1=\dfrac{3}{13}\)
\(C=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)=\left(\dfrac{12}{16}-\dfrac{31}{22}+\dfrac{14}{91}\right).0=0\)
Ta có: A\(=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}=\dfrac{2}{45}\)
\(A=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}\)
\(=\dfrac{2}{45}\)
-Chúc bạn học tốt-
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+\frac{1}{18\cdot19\cdot20}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+\frac{2}{18\cdot19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\cdot\frac{189}{380}=\frac{189}{760}\)
\(C=\frac{52}{1\cdot6}+\frac{52}{6\cdot11}+\frac{52}{11\cdot16}+...+\frac{52}{31\cdot36}\)
\(C=\frac{52}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{6}{31\cdot36}\right)\)
\(C=\frac{52}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{31}-\frac{1}{36}\right)\)
\(C=\frac{52}{5}\cdot\left(1-\frac{1}{36}\right)\)
\(C=\frac{91}{9}\)
Bài 3:
a: \(=-8\left(72+19-1\right)=-8\cdot90-720\)
b: \(=-27\left(1011-12-1\right)=-27\cdot998=-26946\)
c: \(=17\cdot\left[29+111\right]+29\cdot\left(-17\right)\)
\(=17\left(29+111-29\right)=17\cdot111=1887\)
d: \(=43\cdot\left(-1\right)+40=-43+40=-3\)
\(C=\left(1-2-3-4\right)+...+\left(197-198-199-200\right)\)
=-8x25=-200
\(D=-\left(11+13+...+99\right)+\left(10+12+...+98\right)\)
=(-1)+(-1)+...+(-1)
=-1x45=-45
mk làm lại:
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
=\(\left(\frac{1}{11}-\frac{11}{11}\right)+\left(\frac{1}{12}-\frac{12}{12}\right)+\left(\frac{1}{13}-\frac{13}{13}\right)+...+\left(\frac{1}{20}-\frac{20}{20}\right)\)
=\(\frac{-10}{11}+\frac{-11}{12}+\frac{-12}{13}+...+\frac{-19}{20}\)
=\(\frac{-10}{20}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{14}\)
=\(\left(\frac{1}{11}-\frac{11}{11}\right)+\left(\frac{1}{12}-\frac{12}{12}\right)+\left(\frac{1}{13}-\frac{13}{13}\right)+...+\left(\frac{1}{14}-\frac{14}{14}\right)\)
=\(\frac{-10}{11}+\frac{-11}{12}+\frac{-12}{13}+...+\frac{-13}{14}\)
=\(\frac{-10}{14}\)