Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2019\cdot2020}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2019}-\frac{1}{2010}\)
\(M=1-\frac{1}{2010}=\frac{2009}{2010}\)
Vậy M=\(\frac{2009}{2010}\)
+) Đặt A=\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{50}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\cdot\cdot\cdot\frac{49}{50}\)
\(A=\frac{1\cdot2\cdot\cdot\cdot\cdot49}{2\cdot3\cdot\cdot\cdot\cdot50}=\frac{1}{50}\)
S = ( 1 - \(\dfrac{1}{2^2}\))(1-\(\dfrac{1}{3^2}\))(1-\(\dfrac{1}{4^2}\))....(1-\(\dfrac{1}{50^2}\))
S = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{50^2-1}{50^2}\)
Vì em lớp 6 nên phải làm thêm bước này nữa:
Ta có
n2 - 1 = n2 - n + n - 1 = (n2 - n) + (n - 1) = n(n-1) + (n-1) =(n-1)(n+1)
Áp dụng công thức vừa chứng minh trên vào tổng S ta có:
S = \(\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}\).\(\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}\)....\(\dfrac{\left(50-1\right)\left(50+1\right)}{50^2}\)
S = \(\dfrac{1.3}{2^2}\).\(\dfrac{2.4}{3^2}\)......\(\dfrac{49.51}{50^2}\)
S = \(\dfrac{\left(3.4.5.6....49\right)^2.1.2.50.51}{\left(3.4.5.6...49\right)^2.2.2.50.50}\)
S = \(\dfrac{1}{2}\) . \(\dfrac{51}{50}\)
S = \(\dfrac{51}{100}\)
B = ( -1 ) - 2 + ( - 3 ) - 4 + ... + ( - 49 ) - 50 Có 50 số hạng
B = ( - 3 ) +( - 7 ) + .... + ( - 99 ) có 50 : 2 = 25 số hạng
Tổng B là [( - 99 ) + ( - 3 ) ] x 25 : 2 = ( - 1275 )
Vậy B = -1275
\(3M=3+1+\frac{1}{3}\)\(+...+\)\(\frac{1}{3^{48}}+\frac{1}{3^{49}}\)
\(-\)
\(M=1+\frac{1}{3}+\frac{1}{3^2}\)\(+....+\)\(\frac{1}{3^{49}}+\frac{1}{3^{50}}\)
\(\Rightarrow2M=3-\frac{1}{3^{50}}\)
\(\Rightarrow M=\frac{3-\frac{1}{3^{50}}}{2}\)
B = ( -1 ) + 2 + ( -3 ) + 4 + ... + ( -49 ) + 50
=> B = [ 2 + ( -1 ) ] + [ ( -3 ) + 4 ] + ... + [ ( -49 ) + 50 ] ( 25 cặp số )
=> B = 1 + 1 + ... + 1
=> B = 1 x 25
=> B = 25
Vậy B = 25
(1 - 1/2)(1 - 1/3)(1 - 1/4) ... (1 - 1/99)
= 1/2*2/3*3/4*...*98/99
= 1/99
Ta có : (1 -1/2)(1-1/3)(1-1/4)..(1-1/99)
=1/2 .2/3.3/4....98/99
=1/99
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2012}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2011}{2012}\)
\(B=\frac{1}{2012}\)
Ủng hộ mk nha ^-^
(1+1/2).(1+1/3).(1+1/4).......(1+1/2009)
=3/2 . 4/3 . 5/4......2010/2009
=2010/2
=1005
nhớ **** cho mình nha
(1+1/2).(1+1/3).(1+1/4).(1+1/5)
=3/2.4/3.5/4.6/5
=3.4.5.6/2.3.4.5
=6/2
=3
nho **** cho minh nha
\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{50}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{49}{50}\)
\(=\dfrac{1}{50}\)