Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
điều kiện: \(x\ne\pm3\)
A = \(\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4}{x-3}\)
Với x = 1 thì A = \(\frac{4}{1-3}=-2\)
a, ĐKXĐ : x+3 khác 0 ; x-3 khác 0 ; x^2-9 khác 0 <=> x khác -3 và 3
b, A = 3.(x-3)+x+3+18/(x-3).(x+3) = 4x+12/(x+3).(x-3) = 4.(x+3)/(x+3).(x-3) = 4/x-3
c, Khi x =1 thì A = 4/1-3 = -2
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a+b+c=1 <=> a+b=1-c
+) Nếu 1-c=0 => a+b=0 <=> a=-b
=> A = a2015+b2015+c2015
A = (-b)2015+b2015+c2015
A = c2015 => A = 1 (Vì 1-c=0) (1)
Ta có: a3+b3+c3=1
a3+b3=1-c3
(a+b)(a2-ab+b20=(1-c)(1+c+c2)
=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)
=> a2-ab+b2=1+c+c2
(a+b)2-3ab=(1-c)2+3c
=> -3ab=3c <=> -ab=c
Thay -ab = c vào a+b+c=1, ta có:
a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0
=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1
+) Nếu a=1 => b+c=0 <=> b=-c
=> A=a2015+b2015+c2015
=> A=a2015+b2015-b2015
=> A=a2015 => A=1 (2)
+) Nếu b=1 => a+c=0 <=>a=-c
=> A=a2015+b2015+c2015
=> A=a2015+b2015+-a2015
=> A=b2015 => A=1 (3)
Từ (1)(2)(3) => A = 1
Vậy A = 1 với a+b+c=1 và a3+b3+c3=1
b) B = x2-3x+2016
B=x2-3x+2,25+2013,75
B=(x-1,5)2+2013,75
Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75
=> B ≥ 2013,75
=> GTNN của B bằng 2013,75
Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5
Vậy GTNN của B bằng 2013,75 tại x = 1,5
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có x3 + y3
= (x + y)(x2 - xy + y2)
= (x + y)(x2 + 2xy + y2) - 3xy(x + y)
= (x + y)3 - 6xy
= 23 - 6xy
= 8 - 6xy
Lại có x + y = 2
=> (x + y)2 = 4
=> x2 + y2 + 2xy = 4
=> 2xy = -6
=> xy = -3
Khi đó x3 - y3 = 8 + 6.3 = 26
b) a + b = 7
=> a = 7 - b
Khi đó ab = 12
<=> (7 - b).b = 12
=> 7b - b2 = 12
=> 7b - b2 - 12 = 0
=> -(b2 - 7b + 12) = 0
=> b2 - 4b - 3b + 12 = 0
=> b(b - 4) - 3(b - 4) = 0
=> (b - 3)(b - 4) = 0
=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)
Khi b = 3 => a = 4
Khi b = 4 => a = 3
+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1
+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1
c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)
= (a - b)(a2 - 2ab + b2) + 3ab(a - b)
= (a - b)3 + 3ab(a - b)
= 27 + 9ab
Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Khi đó C = 27 + 9.6.3 = 27 + 162 = 189
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì : a > 0 , b > 0 => a2 > 0 , b2 > 0 => a3 > 0 , b3 > 0
Mà : a + b = a2 + b2 = a3 + b3
Nên : a + b = 0
=> a = 0 , b = 0
=> P = a2011 + b2015 = 0 + 0 = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
phân tích a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
=>a=b=c(vì a+b+c khác 0)
thay a=b=c vào P
Ta có: a3 + b3 = a3+3a2b + 3ab2 +b3 - 3a2b -3ab2 = (a+b)3 -3ab(a+b)
Và a+b = -c, ta được:
a3 +b3 + c3 = (a+b)3 -3ab(a+b) +c3 = (-c)3 - 3ab.(-c) +c3 = - 3ab(-c) 3abc. (ĐPCM)