Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F P Q M I R N H O
a) Chứng minh MNRQ là hình chữ nhật
Áp dụng tính chất đường trung bình:
+) \(\Delta\)ABC => MN //= \(\frac{1}{2}\) BC
+) \(\Delta\)HBC => QR //= \(\frac{1}{2}\) BC (1)
=> MN//= QR
=> MNQR là hình bình hành (2)
Xét \(\Delta\) ACH có NR là đường trung bình => NR //AH => NR //AD (3)
Từ (1) ; ( 3) và AD vuông góc BC
=> NR vuông góc RQ (4)
Từ (2) ; (4) => MNQR là hình chữ nhật
b) MPRI là hình bình hành
Áp dụng tính chất đường trung bình
+) \(\Delta\)ABC => MI //= \(\frac{1}{2}\) AC
+) \(\Delta\)AHC => PR //= \(\frac{1}{2}\) AC
=> MI //= PR
=> MPRI là hình bình hành
Tương tự câu a cũng chứng minh đc MP vuông PR
=> MPRI là hình chữ nhật
b) MNRQ là hình chữ nhật
có O là trung điểm MR
=> OM =ON =OR = OQ
MPRI là hình chữ nhật
=> OM = OP = OR = OI
=> OM =ON =OR = OQ = OP = OI
=> Q: M; P; N; N ; R; I thuộc đường tròn tâm O
c) Xét các \(\Delta\)NEQ ; \(\Delta\) R FM ; \(\Delta\)PDI lần lượt vuông tại E; F; D tương ứng vs các cạnh huyền NQ; RM; PI
Các cạnh huyền đều có trung điểm là O ( câu b )
=> ON = OE = OQ
OR = OF= OM
OP= OD = OI
=> D; E; F thuộc đường tròn O.
Bài 1:
a: \(A=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x-1}{x^2+x+1}\)
\(=\dfrac{3x+x^2-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
b: Để A=2 thì x-1=1/2
hay x=3/2
a: Xét tứ giác OBIC có
M là trung điểm của OI
M là trung điểm của BC
Do đó OBIC là hình bình hành
mà \(\widehat{BOC}=90^0\)
nên OBIC là hình chữ nhật
b: ta có: OBIC là hình chữ nhật
nên OI=BC
mà BC=AB
nên OI=AB
Hình bạn tự vẽ nha
a) Chứng minh OBIC là hình chữ nhật
Vì I đối xứng với O qua M nên
MO = MI
Xét tứ giác OBIC có :
MO = MI (cmt)
MB = MC ( Vì M là tđ BC )
mà OI giao BC tại M
=)) OBIC là hình bình hành (1)
Lại có ABCD là hình thoi
mà 2 đường chéo AC và BD giao nhau tại O
=)) góc AOB = góc COB = 90O (2)
Từ (1) và (2) =)) OBIC là hình chữ nhật
b) CM AB = OI
Vì OBIC là hình chữ nhật
=) OC = BI
mà OC = AO ( Vì ABCD là hình thoi )
=) BI = AO (3)
Lại có OBIC là hình chữ nhật
=)) OC // BI
mà O thuộc AC ( do O là tđ của AC )
=)) AC // BI hay AO // BI (4)
Từ (3) và (4) =)) ABIO là hình bình hành
=)) AB = OI
c) SABIO = ??? cm2
Vì ABCD là hình thoi
có 2 đường chéo AC và BD giao nhau tại O
=) O là tđ của AC
O là tđ của BD
mà AC = 6 cm
=) AO = OC = 6 : 2 = 3 ( cm )
Lại có BD = 9 cm
=) BO = OD = 9 : 2 = 4,5 (cm )
Xét tam giác BOC ( góc BOC = 90O ) có :
BC2 = OB2 + OC2 ( Theo định lý Pitago )
=) BC = \(\sqrt{3^2+\left(4,5\right)^2}\)
=) BC \(\approx5,4\left(cm\right)\)
Lại có BM = MC = BC chia 2 =) BM = 2,7 ( cm )
Vì ABCD là hình thoi =) BC = AB = 5,4 cm
Vì OBIC là hình chữ nhật có
2 đường chéo OI và BC giao nhau tại M
=) \(BM\perp OI\)
Vì ABOI là hbh ( cmt câu b )
=) SABOI = AB . BM = 2,7 x 5,4 = 14 , 58 (cm2 )
Vậy ta có ĐPCM
Chúc bạn học tốt =))
a,BC= 25 và AO=12,5
b,ta có tứ giác abcd có gốc a bằng 90 độ(giả thiết ) cb = ad
A B C D M N O
Xét tứ giác AMND có góc \(A=D=M=90^0\), do đó AMND là hình chữ nhật.
do AMND là hình chữ nhật nên \(AM=ND=NC\) mà AM//NC
do đó AMCN là hình bình hành
do đó AC cắt MN tại trung điểm của mỗi đường, do đó ta có đpcm
Bài 1:
B = \(x^2\) - 2\(xy\) + 2y2
Thay \(x=13\) và y = 3 vào B ta được
B = 132 - 2.13.3 + 2.32
B = 169 - 26.3 + 2.9
B = 169 - 78 + 18
B = 91 + 18
B = 109