Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh MNRQ là hình chữ nhật
Áp dụng tính chất đường trung bình:
+) \(\Delta\)ABC => MN //= \(\frac{1}{2}\) BC
+) \(\Delta\)HBC => QR //= \(\frac{1}{2}\) BC (1)
=> MN//= QR
=> MNQR là hình bình hành (2)
Xét \(\Delta\) ACH có NR là đường trung bình => NR //AH => NR //AD (3)
Từ (1) ; ( 3) và AD vuông góc BC
=> NR vuông góc RQ (4)
Từ (2) ; (4) => MNQR là hình chữ nhật
b) MPRI là hình bình hành
Áp dụng tính chất đường trung bình
+) \(\Delta\)ABC => MI //= \(\frac{1}{2}\) AC
+) \(\Delta\)AHC => PR //= \(\frac{1}{2}\) AC
=> MI //= PR
=> MPRI là hình bình hành
Tương tự câu a cũng chứng minh đc MP vuông PR
=> MPRI là hình chữ nhật
b) MNRQ là hình chữ nhật
có O là trung điểm MR
=> OM =ON =OR = OQ
MPRI là hình chữ nhật
=> OM = OP = OR = OI
=> OM =ON =OR = OQ = OP = OI
=> Q: M; P; N; N ; R; I thuộc đường tròn tâm O
c) Xét các \(\Delta\)NEQ ; \(\Delta\) R FM ; \(\Delta\)PDI lần lượt vuông tại E; F; D tương ứng vs các cạnh huyền NQ; RM; PI
Các cạnh huyền đều có trung điểm là O ( câu b )
=> ON = OE = OQ
OR = OF= OM
OP= OD = OI
=> D; E; F thuộc đường tròn O.
a, Vì H,O là trung điểm BC,AC nên OH là đtb tg ABC
Do đó OH//AB hay ABOH là hthang
b, Vì O là trung điểm AC và HK nên AHCK là hbh
Lại có tam giác ABC cân nên AH là trung tuyến đồng thời cũng là đường cao
Do đó \(\widehat{AHC}=90^0\)
Vậy AHCK là hcn
Xét tứ giác AMND có góc \(A=D=M=90^0\), do đó AMND là hình chữ nhật.
do AMND là hình chữ nhật nên \(AM=ND=NC\) mà AM//NC
do đó AMCN là hình bình hành
do đó AC cắt MN tại trung điểm của mỗi đường, do đó ta có đpcm
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a: Xét ΔMNP có
Q là trung điểm của MN
K là trung điểm của NP
Do đó: QK là đường trung bình của ΔMNP
Suy ra: QK//MP
hay MQKP là hình thang vuông
a: Xét ΔABC có
BE/BC=BD/BA
nên ED//AC và ED=AC/2
=>ED//AF và ED=AF
=>ADEF là hình bình hành
mà góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác BMAE có
D là trung điểm chung của BA vàME
EA=EB
Do đó: BMAE là hình thoi
c: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
S=1/2*3*4=6(cm2)
a: Xét tứ giác AMND có
\(\widehat{ANM}=\widehat{MAD}=\widehat{ADN}=90^0\)
=>AMND là hình chữ nhật
b: AMND là hình chữ nhật
=>AM=ND
mà \(AM=\dfrac{AB}{2}\) và AB=CD
nên DN=DC/2
=>N là trung điểm của CD
AM=MB=AB/2
CN=ND=CD/2
mà AB=CD
nên AM=MB=CN=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của MN
nên O là trung điểm của AC
Bài 1:
B = \(x^2\) - 2\(xy\) + 2y2
Thay \(x=13\) và y = 3 vào B ta được
B = 132 - 2.13.3 + 2.32
B = 169 - 26.3 + 2.9
B = 169 - 78 + 18
B = 91 + 18
B = 109