\(\sqrt[3]{4}\) +1)\(^3\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng công thức HĐT đáng nhớ ta có:
\((\sqrt[3]{4}+1)^3-(\sqrt[3]{4}-1)^3=[(\sqrt[3]{4}+1)-(\sqrt[3]{4}-1)][(\sqrt[3]{4}+1)^2+(\sqrt[3]{4}+1)(\sqrt[3]{4}-1)+(\sqrt[3]{4}-1)^2]\)

\(=2[\sqrt[3]{16}+2\sqrt[3]{4}+1+\sqrt[3]{16}-1+\sqrt[3]{16}-2\sqrt[3]{4}+1]\)

\(=2(3\sqrt[3]{16}+1)\)

6 tháng 9 2021

a, Ta có: \(x=4-2\sqrt{3}\)\(=3-2\sqrt{3}+1\)\(=\left(\sqrt{3}-1\right)^2\)

         \(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}\)\(=\sqrt{3}-1\)

Thay \(\sqrt{x}=\sqrt{3}-1\) vào biểu thức P ta có:

\(P=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-4}\)\(=\frac{\sqrt{3}}{\sqrt{3}-5}\)\(=\frac{\sqrt{3}.\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right).\left(\sqrt{3}+5\right)}\)\(=\frac{3-5\sqrt{3}}{3-25}\)\(=\frac{5\sqrt{3}-3}{22}\)

Vậy \(P=\frac{5\sqrt{3}-3}{22}\)khi \(x=4-2\sqrt{3}\) 

b, \(E=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}\)\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right).\left(\sqrt{3}+1\right)}\)\(-\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right).\left(\sqrt{3}-1\right)}\)

       \(=\frac{\sqrt{3}+1-\sqrt{3}+1}{3-1}\)     \(=\frac{2}{2}=1\)

6 tháng 9 2021

a, Ta có : \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

Thay vào P ta được : \(P=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-4}=\frac{\sqrt{3}}{\sqrt{3}-5}=\frac{\sqrt{3}\left(\sqrt{3}+5\right)}{-22}=-\frac{3+5\sqrt{3}}{22}\)

b, \(E=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}=\frac{\sqrt{3}+1-\sqrt{3}+1}{2}=1\)

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

11 tháng 7 2016

a) \(A=\sqrt{64}+4\sqrt{4}+2016=\sqrt{8^2}+4.\sqrt{2^2}+2016=8+4.2+2016=2032\)

b) \(B=2\sqrt{8}-3\sqrt{18}+4\sqrt{128}-5\sqrt{32}=4\sqrt{2}-9\sqrt{2}+32\sqrt{2}-20\sqrt{2}\)

\(=\sqrt{2}\left(4-9+32-20\right)=7\sqrt{2}\)

a,

\(A=\sqrt{8}^2+2.\sqrt{8}.\sqrt{2}+\sqrt{2}^2+2014\)

\(=\left(\sqrt{8}+\sqrt{2}\right)^2+2014\)

1. Cho hai biểu thức A=\(\frac{4\sqrt{x}}{x-1}\) B = \(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{1}}{\sqrt{x}-1}+\frac{2}{x-1}\)với x ≥ 0, x≠1.a) Tính giá trị của A khi x =4b) Rút gọn các biểu thức Bc) Tìm các giá trị của x để A = 322. Cho biểu thức A=\(\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\) với x ≥ 0, x≠1a) Rút gọn Ab) Tính giá trị của A khi x = 6 +...
Đọc tiếp

1. Cho hai biểu thức A=\(\frac{4\sqrt{x}}{x-1}\) B = \(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{1}}{\sqrt{x}-1}+\frac{2}{x-1}\)với x ≥ 0, x≠1.

a) Tính giá trị của A khi x =4

b) Rút gọn các biểu thức B

c) Tìm các giá trị của x để A = 32

2. Cho biểu thức A=\(\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\) với x ≥ 0, x≠1

a) Rút gọn A

b) Tính giá trị của A khi x = 6 + 2√5

c) Tìm x để A = 7

3. Cho biểu thức A =\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\) B=  \(\sqrt{x}-\frac{x+2\sqrt{x}+4}{\sqrt{x}+3}\) với x > 0, x ≠ 4.

a) Tính giá trị của A khi x = 9

b) Rút gọn biểu thức B

c) Tìm x để \(A.B=\frac{1}{3}\)

4. Cho hai biểu thức A =\(\frac{2\sqrt{x}}{x-9}-\frac{2}{\sqrt{x+3}}\) và B = \(\frac{3}{x-3\sqrt{x}}\), với x > 0, x ≠ 9

a) Tính giá trị của B khi x = 25

b) Rút gọn biểu thức A

c) Tìm giá trị của x để \(\frac{B}{A}=\frac{2\sqrt{x}+1}{2}\)

0
12 tháng 10 2019

G = \(\sqrt{6}-2+5-\sqrt{6}+2^3=3+8=11\)

F= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2^5\right)^2}\)=\(2+\sqrt{3}-\sqrt{3}+1+2^5=3+32=35\)

H = \(\sqrt{6}-\frac{4\left(\sqrt{10}+\sqrt{6}\right)}{10-6}+\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\)=\(\sqrt{6}-\sqrt{10}-\sqrt{6}+\sqrt{10}=0;\)