Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(x=4-2\sqrt{3}\)\(=3-2\sqrt{3}+1\)\(=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}\)\(=\sqrt{3}-1\)
Thay \(\sqrt{x}=\sqrt{3}-1\) vào biểu thức P ta có:
\(P=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-4}\)\(=\frac{\sqrt{3}}{\sqrt{3}-5}\)\(=\frac{\sqrt{3}.\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right).\left(\sqrt{3}+5\right)}\)\(=\frac{3-5\sqrt{3}}{3-25}\)\(=\frac{5\sqrt{3}-3}{22}\)
Vậy \(P=\frac{5\sqrt{3}-3}{22}\)khi \(x=4-2\sqrt{3}\)
b, \(E=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}\)\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right).\left(\sqrt{3}+1\right)}\)\(-\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right).\left(\sqrt{3}-1\right)}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{3-1}\) \(=\frac{2}{2}=1\)
a, Ta có : \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
Thay vào P ta được : \(P=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-4}=\frac{\sqrt{3}}{\sqrt{3}-5}=\frac{\sqrt{3}\left(\sqrt{3}+5\right)}{-22}=-\frac{3+5\sqrt{3}}{22}\)
b, \(E=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}=\frac{\sqrt{3}+1-\sqrt{3}+1}{2}=1\)
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
a) \(A=\sqrt{64}+4\sqrt{4}+2016=\sqrt{8^2}+4.\sqrt{2^2}+2016=8+4.2+2016=2032\)
b) \(B=2\sqrt{8}-3\sqrt{18}+4\sqrt{128}-5\sqrt{32}=4\sqrt{2}-9\sqrt{2}+32\sqrt{2}-20\sqrt{2}\)
\(=\sqrt{2}\left(4-9+32-20\right)=7\sqrt{2}\)
a,
\(A=\sqrt{8}^2+2.\sqrt{8}.\sqrt{2}+\sqrt{2}^2+2014\)
\(=\left(\sqrt{8}+\sqrt{2}\right)^2+2014\)
G = \(\sqrt{6}-2+5-\sqrt{6}+2^3=3+8=11\)
F= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2^5\right)^2}\)=\(2+\sqrt{3}-\sqrt{3}+1+2^5=3+32=35\)
H = \(\sqrt{6}-\frac{4\left(\sqrt{10}+\sqrt{6}\right)}{10-6}+\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\)=\(\sqrt{6}-\sqrt{10}-\sqrt{6}+\sqrt{10}=0;\)
Lời giải:
Áp dụng công thức HĐT đáng nhớ ta có:
\((\sqrt[3]{4}+1)^3-(\sqrt[3]{4}-1)^3=[(\sqrt[3]{4}+1)-(\sqrt[3]{4}-1)][(\sqrt[3]{4}+1)^2+(\sqrt[3]{4}+1)(\sqrt[3]{4}-1)+(\sqrt[3]{4}-1)^2]\)
\(=2[\sqrt[3]{16}+2\sqrt[3]{4}+1+\sqrt[3]{16}-1+\sqrt[3]{16}-2\sqrt[3]{4}+1]\)
\(=2(3\sqrt[3]{16}+1)\)