Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(2^2-9^3+4^{-2}.16-2.5^2\)
\(=4-729+1-50=-774\)
B=\(\left(2^3.2\right).\dfrac{1}{2}+3^{-2}.3^2-7.1+5\)
\(B=2^4.\dfrac{1}{2}+1-7+5=8+1-7+5=7\)
C = 2-3 + (52)3.5-3 + 4-3.16 - 2.32 - 105.(\(\dfrac{24}{51}\))0
C = \(\dfrac{1}{8}\) + 56.5-3 + 4-3.42 - 2.9 - 105.1
C = \(\dfrac{1}{8}\) + 53 + \(\dfrac{1}{4}\) - 18 - 105
C = (\(\dfrac{1}{8}\) + \(\dfrac{1}{4}\)) - (105 - 125 + 18)
C = \(\dfrac{3}{8}\) - (-20 + 18)
C = \(\dfrac{3}{8}\) + 2
C = \(\dfrac{19}{8}\)
2:
a: \(=\dfrac{1}{3}\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)
1:
\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(=-4-\dfrac{1}{4}=-\dfrac{17}{4}\)
Bài 1:
\(A=\left(7-\dfrac{3}{4}+\dfrac{1}{3}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\)
\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(A=\left(7-6-5\right)-\left(\dfrac{3}{4}+\dfrac{5}{4}-\dfrac{7}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\)
\(A=-4-\dfrac{3+5-7}{4}+\dfrac{1+4-5}{3}\)
\(A=-4-\dfrac{1}{4}+\dfrac{0}{3}\)
\(A=-\dfrac{16}{4}-\dfrac{1}{4}+0\)
\(A=\dfrac{-16-1}{4}\)
\(A=-\dfrac{17}{4}\)
Bài 2:
\(\dfrac{1}{3}\cdot-\dfrac{4}{5}+\dfrac{1}{3}\cdot-\dfrac{6}{5}\)
\(=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{-4-6}{5}\)
\(=\dfrac{1}{3}\cdot\dfrac{-10}{5}\)
\(=\dfrac{1}{3}\cdot-2\)
\(=-\dfrac{2}{3}\)
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
=-1/2.3-1/3.4-1/4.5-1/5.6
=-(1/2.3+1/3.4+1/4.5+1/5.6)
=-(1/2-1/3+1/3-1/4+1/5-1/6)
=-(1/2-1/6)
=1/6-1/2=-1/3
Bài 3 :
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : \(A=\left(x-2\right)^2-4\ge-4\forall x\)
Vậy \(A_{min}=-4\) khi x = 2
B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)
B2:
a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)
\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)
B3:
Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x = 2
Vậy GTNN của A = -4 khi x = 2
\(A=\dfrac{1}{x-3}\Rightarrow x-3\inƯ\left(1\right)=\left\{\pm1\right\}\)
x-3 | 1 | -1 |
x | 4 | 2 |
\(B=\dfrac{7-x}{x-5}=\dfrac{-\left(x-5-2\right)}{x-5}=\dfrac{-\left(x-5\right)+2}{x-5}\Rightarrow x-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x-5 | 1 | -1 | 2 | -2 |
x | 6 | 4 | 7 | 3 |
\(C=\dfrac{5x-19}{x-5}=\dfrac{5\left(x-5\right)+6}{x-5}\Rightarrow x-5\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-5 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 6 | 4 | 7 | 3 | 8 | 2 | 11 | -1 |
a) Cách 1:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = 8 + \frac{7}{3} - \frac{3}{5} - 5 - \frac{2}{5} - \frac{{10}}{3} + 2\\ = (8 - 5 + 2) + (\frac{7}{3} - \frac{{10}}{3}) - (\frac{3}{5} + \frac{2}{5})\\ = 5 + \frac{{ - 3}}{3} - \frac{5}{5}\\ = 5 + ( - 1) - 1\\ = 3\end{array}\)
Cách 2:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = (\frac{{120}}{{15}} + \frac{{35}}{{15}} - \frac{9}{{15}}) - (\frac{{25}}{5} + \frac{2}{5}) - (\frac{{10}}{3} - \frac{6}{3})\\ = \frac{{146}}{{15}} - \frac{{27}}{5} - \frac{4}{3}\\ = \frac{{146}}{{15}} - \frac{{81}}{{15}} - \frac{{20}}{{15}}\\ = \frac{{45}}{{15}}\\ = 3\end{array}\)
b)
\(\begin{array}{l}(7 - \frac{1}{2} - \frac{3}{4}):(5 - \frac{1}{4} - \frac{5}{8})\\ = (\frac{{28}}{4} - \frac{2}{4} - \frac{3}{4}):(\frac{{40}}{8} - \frac{2}{8} - \frac{5}{8})\\ = \frac{{23}}{4}:\frac{{33}}{8}\\ = \frac{{23}}{4}.\frac{8}{{33}}\\ = \frac{{46}}{{33}}\end{array}\)
\(\left(7+3\dfrac{1}{4}-\dfrac{3}{5}\right)+\left(0,4-5\right)-\left(4\dfrac{1}{4}-1\right)\\ =7+3\dfrac{1}{4}-\dfrac{3}{5}+\dfrac{2}{5}-5-4\dfrac{1}{4}+1\\ =\left(7-5+1\right)+\left(3\dfrac{1}{4}-4\dfrac{1}{4}\right)+\left(\dfrac{-3}{5}+\dfrac{2}{5}\right)\\ =3-1+\dfrac{-1}{5}\\ =2+\dfrac{-1}{5}\\=\dfrac{9}{5}\)