Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)
=\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)
\(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)
Vay P=a+1
phan b,c ap dung phan a la ra
CM bài toán phụ: \(x+y+z=0\)
CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương
Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)
\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)
\(Q=2021-\frac{1}{2021}=...\)
Đặt biểu thức trên là A
TC
√1 + 1/1^2 + 1/2^2 = 1 + 1 - 1/2
Tương tự
√1 + 1/2^2 + 1/3^2 = 1 + 1/2 - 1/3
√1 + 1/2021^2 + 2022^2 = 1 + 1/2021 - 1/2022
=> A = (1 + 1 + 1/3 +...+ 1/2021) - (1/2 + 1/3 +....+ 1/2022)
=> A = 1 + 1 - 1/2022 = 4043/2022
đúng không bạn
c) Áp dụng công thức \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\),ta được:
\(Q=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)
\(=1+1+1+...+1-\frac{1}{2021}\)
\(=2021-\frac{1}{2021}=\frac{4084440}{2021}\)
TA XÉT PHÂN THỨC TỔNG QUÁT SAU:
\(A=\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}\)
\(A=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(A=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(A=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}\)
\(A=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
\(A=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
THAY LẦN LƯỢT CÁC GIÁ TRỊ n từ 1 => 2021 vào ta được:
=> \(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2020}}-\frac{1}{\sqrt{2021}}\)
=> \(A=1-\frac{1}{\sqrt{2021}}=\frac{\sqrt{2021}-1}{\sqrt{2021}}\)
VẬY \(A=\frac{\sqrt{2021}-1}{\sqrt{2021}}.\)
Ta có: \(\frac{1}{\left(a-1\right)\sqrt{a}+a.\sqrt{a-1}}=\frac{a-\left(a-1\right)}{\sqrt{a}.\sqrt{a-1}.\left(\sqrt{a}+\sqrt{a-1}\right)}\)
\(=\frac{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}{\sqrt{a}.\sqrt{a-1}.\left(\sqrt{a}+\sqrt{a-1}\right)}=\frac{\sqrt{a}-\sqrt{a-1}}{\sqrt{a}.\sqrt{a-1}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a-1}}-\frac{\sqrt{a-1}}{\sqrt{a}.\sqrt{a-1}}=\frac{1}{\sqrt{a-1}}-\frac{1}{\sqrt{a}}\)
Thay lần lượt các giá trị của a bằng \(2;3;4;........;2021\)ta được:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+.........+\frac{1}{\sqrt{2020}}-\frac{1}{\sqrt{2021}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2021}}=1-\frac{1}{\sqrt{2021}}\)
Áp dụng bài vừa chứng minh bên dưới :D
\(\Rightarrow P=2021\)
\(x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{2}}\)
Ta có: Đặt \(A=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)=> \(A^2=\frac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{\sqrt{5}+1}\)
=> \(A^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=2\)=> \(A=\sqrt{2}\)
\(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
==> \(x=\sqrt{2}-\left(\sqrt{2}+1\right)=-1\)
Do đó: N = (-1)2019 + 3.(-1)2020 - 2.(-1)2021 = -1 + 3 + 2 = 4
Có: \(x+y+z=\frac{1}{2}\Leftrightarrow2x+2y+2z=1\)
Mặt khác: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2x+2y+2z}{xyz}=4\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) ( vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\) )
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{\frac{1}{2}}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{x+y+z}-\frac{1}{z}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y\right)\left(zx+yz+z^2\right)+xy\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^{2021}+y^{2021}=0\\y^{2017}+z^{2017}=0\\z^{2019}+x^{2019}=0\end{matrix}\right.\)\(\Leftrightarrow Q=0\)
Vậy...
A= \(\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{19.20.21}-\frac{1}{20.21.22}\right)\)
=\(\frac{1}{3}\left(\frac{1}{6}-\frac{1}{9240}\right)\)
=\(\frac{171}{3080}\)
A=1/1-1/2-1/3+1/2-1/3-1/4-1/5+1/3-1/4-1/5-1/6+...+1/19-1/20-1/21-1/22
A=1/1-1/22
A=21/22
Vậy A=21/22
\(\dfrac{k-1}{k!}=\dfrac{k}{k!}-\dfrac{1}{k!}=\dfrac{1}{\left(k-1\right)!}-\dfrac{1}{k!}\)
\(\Rightarrow S=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{2021!}-\dfrac{1}{2022!}\)
\(=1-\dfrac{1}{2022!}\)