Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(7^{200}< 7^{205}\Rightarrow7^{200}+1< 7^{205}+1\Rightarrow\frac{7^{200}+1}{7^{202}+1}< \frac{7^{205}+1}{7^{202}+1}\)
vi 7200 + 1 < 7205 + 1 => \(\frac{7^{200}+1}{7^{202}+1}< \frac{7^{205}+1}{7^{202}+1}\)
=> \(A< B\)
A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7A=(1+\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}})-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6A=\left(1-\frac{1}{7^{99}}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{7^{99}}\right):6\)
Câu b tương tự nha
a) \(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...........+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.........+\frac{1}{7^{99}}\)
\(\Rightarrow7A-A=6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
\(A=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right)+1:\left(30.1009-160\right)\)
\(=\frac{23.1009+7.1009-7.23}{7.23.1009}:\frac{7.1009+23.1009-23.7+1}{7.23.1009}+\frac{1}{30.1009-160}\)
\(=\frac{30109}{7.23.1009}.\frac{7.3.1009}{30110}+\frac{1}{30110}\)
\(=\frac{30109}{30110}+\frac{1}{30110}=\frac{30110}{30110}=1\)
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
a) \(\frac{2}{7}:1=\frac{2x1}{7x1}=\frac{2}{7}\)
\(\frac{2}{7}:\frac{3}{4}=\frac{2}{7}x\frac{4}{3}=\frac{2x4}{7x3}=\frac{8}{21}\)
\(\frac{2}{7}:\frac{5}{4}=\frac{2}{7}x\frac{4}{5}=\frac{2x4}{7x5}=\frac{8}{35}\)
Hai câu còn lại mih k hiểu đề lắm nhé!!
cảm ơn bạn nhiều !!
mình không biết làm hai câu cuối thôi@
cảm ơn bạn lần nữa
\(\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\)
\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\left(1-1\right)\)
\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{3}{7}\right).0\)
\(=0\)
Trong dãy nhất định có \(\left[1-\frac{7}{7}\right]=0\)nên tích dãy trên là 0