\(√(8+2√15) + √(8-2√15) \) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

b1. a)

Gỉa sử căn bậc 2 + căn bậc 3 lớn hơn hoặc bằng căn bậc 10

=> ( căn bậc 2 + căn bậc 3 )2 lớn hơn hoặc bằng căn bậc 102

2+ 2 * căn bậc 3 + 3 lớn hơn hoặc bằng 10

5 + 2 căn 6 lớn hơn hoặc bằng 10

2 căn 6 lớn hơn hoặc bằng 5

( 2 căn 6 )2 lớn hơn hoặc bằng 52

4 * 6 lớn hơn 25

24 lớn hơn hoặc bằng 25 (sai)

Vậy căn bậc 2 + căn bậc 3 nhỏ hơn căn bậc 10

28 tháng 12 2017

\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

\(A=\sqrt{8-2\cdot\sqrt{3}\cdot\sqrt{5}}-\sqrt{8+2\cdot\sqrt{3}\cdot\sqrt{5}}\)

\(A=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

\(A=\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|\)

\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)

\(A=-2\sqrt{3}\)

5 tháng 1 2018

Cách khác:

\(A^2=\left(\sqrt{8-2\sqrt{15}}\right)^2-2.\sqrt{8-2\sqrt{15}}.\sqrt{8+2\sqrt{15}}+\left(\sqrt{8+2\sqrt{15}}\right)^2\)

\(A^2=8-2\sqrt{15}-2.\sqrt{8^2-\left(2\sqrt{15}\right)^2}+8+2\sqrt{15}\)

\(A^2=16-2.2=12\)\(\Rightarrow\left[{}\begin{matrix}A=2\sqrt{3}\\A=-2\sqrt{3}\end{matrix}\right.\)

\(\sqrt{8-2\sqrt{15}}< \sqrt{8+2\sqrt{15}}\) nên A<0 nên A=\(-2\sqrt{3}\)

6 tháng 9 2021

phần b là \(2\sqrt{2}\) nhé cacban

14 tháng 8 2019

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=1-\sqrt{3}-\sqrt{3}-2\)

\(=-2\sqrt{3}-1\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+4-2\sqrt{3}\)

\(=6-3\sqrt{3}\)

14 tháng 8 2019

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(A=\sqrt{3}-1-\sqrt{3}-2\)

\(A=-3\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)}\)

\(B=2-\sqrt{3}+\sqrt{3}-1\)

\(B=1\)

2 tháng 7 2018

a)                  \(A=\sqrt{4-\sqrt{15}}-\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}-\sqrt{4+2\sqrt{3}}\)

                         \(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

                          \(=\sqrt{5}-\sqrt{3}-\left(\sqrt{3}+1\right)=\sqrt{5}-1\)

\(\Rightarrow\)\(A=\frac{\sqrt{5}-1}{\sqrt{2}}\)

b) tương tự câu a

c) \(\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}-\sqrt{6-2\sqrt{5+\sqrt{13-4\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}-\sqrt{6-2\sqrt{5+\sqrt{\left(\sqrt{12}-1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}-\sqrt{6-2\sqrt{5+\left(\sqrt{12}-1\right)}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}-\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}-\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}-\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)

14 tháng 6 2019

a) \(-\sqrt{3}\)      b) -10             c)  60               d)  -1             e) 1

6 tháng 8 2018

Giải:

\(\sqrt{8+2\sqrt{15}}\)

\(=\sqrt{5+2\sqrt{15}+3}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

\(=\left|\sqrt{5}+\sqrt{3}\right|\)

\(=\sqrt{5}+\sqrt{3}\)

Vậy ...

4 tháng 1 2018

ta có \(\left(\sqrt{x^2+3}-x\right)\left(\sqrt{x^2+3}+x\right)=x^2+3-x^2=3\)

=>\(\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)

tương tự, ta có \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\)

+ 2 vế của 2 đẳng thức đó, ta có \(\sqrt{x^2+3}-x+\sqrt{y^2+3}-y=\sqrt{x^2+3}+x+\sqrt{y^2+3}+y\)

<=>\(0=2\left(x+y\right)\Leftrightarrow x+y=0\)

vậy E=0

^_^