K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

thay x=y=2 vào đa thức B có:

4.2 - 95 - 6.2 - 1

=8-95-12-1

=-100

Vậy...

2, B = 4x - 95 - 6y - 1 tại x = y = 2

    B = 4 x 2 - 95 - 6 x 2 - 1 

    B = 8 - 95 - 12 - 1 

    B = -100

2 tháng 8 2021

Trả lời:

1, A = 49 - 14x + x2 - y2 

= ( x2 - 14x + 49  ) - y2

= ( x - 7 )2 - y2

= ( x - 7 - y ) ( x - 7 + y )

Thay x = 1; y = - 2 vào A, ta có:

 A = [ 1 - 7 - ( - 2 ) ] [ 1 - 7 + ( - 2 ) ]

= ( - 4 ) ( - 8 )

= 32

2, B = 4x - 95 - 6y - 1 

Thay x = y = 2 vào B, ta có:

B = 4.2 - 95 - 6.2 - 1

= - 100

2 tháng 8 2021

\(A=49-14x+x^2-y^2=\left(x-7\right)^2-y^2=\left(x-7-y\right)\left(x-7+y\right)\)

Thay x = 1 ; y = -2 ta được : \(-4.\left(-8\right)=32\)

\(B=4x-95-6y-1\)

Thay x = y = 2 ta đươc : \(8-95-12-1=-116\)

1)

Thay x=1,y=-2 vào đa thức A có:

49-14.1+1^2+2^2

=49-14+1+4

=40

31 tháng 7 2021

=40 nha

20 tháng 7 2021

Cảm ơn ạhihi

14 tháng 8 2019

\(a,A=4x^2-20x+27=\left(2x\right)^2-2.2x.5+5^2+2\)\(=\left(2x-5\right)^2+2\)

Mà \(\left(2x-5\right)^2\ge0\Rightarrow\left(2x-5\right)^2+2>0\Rightarrow A>0\)

\(b,B=x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)\(=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\)

Mà \(\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow B>0\)

\(c,C=x^2+4x+y^2-6y+15=x^2+4x+4+y^2-6y+9+2\)

\(\left(x+2\right)^2+\left(y-3\right)^2+2\)

Mà \(\left(x+2\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+2>0\Rightarrow C>0\)

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

4 tháng 9 2021

\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=-2\)

\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)

Dấu \("="\Leftrightarrow x=-5\)

\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(A=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

\(C=4x^2-4x+5\)

\(=4x^2-4x+1+4\)

\(=\left(2x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

20 tháng 9 2021

2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)

\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)

3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)

\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)

Bài 4: 

Ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)

\(\Leftrightarrow-62x=-92\)

hay \(x=\dfrac{46}{31}\)