Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:
65 × 111 - 13 × 15 × 37
= 5 × 13 × 3 × 37 - 13 × 3 × 5 × 37
= 0
Vì 0 nhân với bất kì số nào cũng = 0 nên biểu thức trên = 0
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(65.111-13.15.37\right)\)
\(\left(1+2+3+...100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(13.5.111-13.15.37\right)\)
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+10^2\right).\left(13.15.37-13.15.37\right)\)
\(=0\)

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

1. 53 = 5.5.5 = 125
2. 27 = 2.2.2.2.2.2.2 = 128
3. 44 = 4.4.4.4 = 256
4. 73 = 7.7.7 = 343
6. 35 = 243
7. 26 = 64
8. 34 = 81
9. 83 = 512
11. 132 = 169
12. 112 = 121
13. 142 = 196
14. 152 = 225
16. 172 = 289
17. 182 = 324
18. 192 = 361
19. 202 = 400
21. 104 = 10000
22. 105 = 100000
23. 106 = 1000000
24. 107 = 10000000

a, \(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b, \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=32.25+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=10+11\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=21:7\)
\(\Rightarrow x=3\)
c, \(x^{10}=1^x\)
\(\Rightarrow x\in\left\{1;0\right\}\)
\(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32=2^4\)
\(\Rightarrow x=4\)
\(\left(7x-11\right)^3=2^5.5^2+200\)
Phần này mk ko bt làm đâu
\(x^{10}=1^x\)
\(\Rightarrow\)\(x^{10}=1\)
\(\Rightarrow x=1\)

Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)

\(1^3+2^3+3^3+\cdots+100^3\)
\(=\left(1+2+\cdots+100\right)^2\)
\(=\left(100\cdot\frac{101}{2}\right)^2=\left(50\cdot101\right)^2=5050^2=25502500\)

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
S=(1+2+⋯+100)(12+22+⋯+102)(65⋅111−13⋅15⋅17)
1+2 +⋯+100=2100⋅101=5050
1mũ 2+2 mũ 2+⋯+102=610⋅11⋅21=385
65⋅111−13⋅15⋅17=7215−3315=3900
S=5050⋅385⋅3900=7582575000
\(1 + 2 + \ldots + 100 = \frac{100 \times 101}{2} = 5050\)
\(1^{2} + 2^{2} + \ldots + 10^{2} = \frac{10 \times 11 \times 21}{6} = 385\)
\(65 \times 111 = 7215\)\(13 \times 15 \times 17 = 195 \times 17 = 3315\)\(65 \times 111 - 13 \times 15 \times 17 = 7215 - 3315 = 3900\)
\(S=5050\times385\times3900=7.582.575.000\)
Kết luận:
\(\boxed{S = 7.582.575.000}\)