Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+\frac{sin^2x}{cos^2x}=1+tan^2x+tan^2x=1+2tan^2x\)
\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}-sina.cosa\)
\(=sin^2a+cos^2a+sina.cosa-sina.cosa=1\)
\(\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cosx.cos2x}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=\frac{cos^2a-sin^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}\)
\(=\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa+sina}+\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa-sina}=cosa-sina+cosa+sina=2cosa\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
\(A=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}+sina+cosa\)
\(=1+sina.cosa+sina+cosa\)
\(=\left(sina+1\right)\left(cosa+1\right)\)
\(sina+cosa=\sqrt{2}\Leftrightarrow\left(sina+cosa\right)^2=2\\ \)
\(\Leftrightarrow\sin^2a+2\sin a.cosa+cos^2a=2\)
\(\Leftrightarrow1+2.sina.cosa=2\)
\(\Leftrightarrow2.sina.cosa=2-1=1\)
\(\Leftrightarrow\sin a.cosa=\frac{1}{2}\)
Vậy P=sina.cosa=\(\frac{1}{2}\)
\(Q=\sin^4a+cos^4a\)
\(\Leftrightarrow\left(sin^2a\right)^2+\left(cos^2a\right)^2\)
\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2.sin^2a.cos^2a\)
\(\Leftrightarrow1^2-2.sin^2a.cos^2a\) tách tiếp rồi thế vào là được .tương tự phàn P ý
còn R thì tách sin^3a=sin^2a+sina tương tự cos mũ 3 a cụng vậy
theo tớ là như thế còn có sai thì đừng có ném đá ném gạch na
\(\frac{sin2a-2sina}{sin2a+2sina}=\frac{2sina.cosa-2sina}{2sina.cosa+2sina}=\frac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}=\frac{cosa-1}{cosa+1}\)
\(=\frac{1-2sin^2\frac{a}{2}-1}{2cos^2\frac{a}{2}-1+1}=\frac{-sin^2\frac{a}{2}}{cos^2\frac{a}{2}}=-tan^2\frac{a}{2}\)
\(\frac{sin^4x-sin^2x+cos^2x}{cos^4x-cos^2x+sin^2x}=\frac{sin^2x\left(sin^2x-1\right)+cos^2x}{cos^2x\left(cos^2x-1\right)+sin^2x}=\frac{-sin^2x.cos^2x+cos^2x}{-cos^2x.sin^2x+sin^2x}\)
\(=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x\left(1-cos^2x\right)}=\frac{cos^4x}{sin^4x}=cot^4x\)
\(\frac{sin^3a-cos^3a}{sina-cosa}=\frac{\left(sina-cosa\right)\left[sin^2a+cos^2a+sina.cosa\right]}{sina-cosa}=1+sina.cosa=1+\frac{1}{2}sin2a\)
\(tana=\sqrt{3}\)
nên \(\dfrac{sina}{cosa}=\sqrt{3}\)
=>\(sina=\sqrt{3}\cdot cosa\)
=>a=60 độ
\(A=\dfrac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina\cdot cosa\right)}{sina-cosa}\)
\(=1+sina\cdot cosa=1+\dfrac{1}{2}sin2a\)
\(=1+\dfrac{1}{2}\cdot sin120=\dfrac{4+\sqrt{3}}{4}\)
Lời giải:
a)
\(\frac{\cos (a-b)}{\cos (a+b)}=\frac{\cos a\cos b+\sin a\sin b}{\cos a\cos b-\sin a\sin b}=\frac{\frac{\cos a\cos b}{\sin a\sin b}+1}{\frac{\cos a\cos b}{\sin a\sin b}-1}=\frac{\cot a\cot b+1}{\cot a\cot b-1}\)
b)
\(2(\sin ^6a+\cos ^6a)+1=2(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+1\)
\(=2(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+1\)
\(=3(\sin ^4a+\cos ^4a)-(\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a)+1\)
\(=3(\sin ^4a+\cos ^4a)-(\sin ^2a+\cos ^2a)^2+1\)
\(=3(\sin ^4a+\cos ^4a)-1^2+1=3(\sin ^4a+\cos ^4a)\)
c)
\(\frac{\tan a-\tan b}{cot b-\cot a}=\frac{\tan a-\tan b}{\frac{1}{\tan b}-\frac{1}{\tan a}}\) (nhớ rằng \(\tan x.\cot x=1\rightarrow \cot x=\frac{1}{\tan x}\) )
\(=\frac{\tan a-\tan b}{\frac{\tan a-\tan b}{\tan a\tan b}}=\tan a\tan b\)
d)
\((\cot x+\tan x)^2-(\cot x-\tan x)^2=(\cot ^2x+\tan ^2x+2\cot x\tan x)-(\cot ^2x-2\cot x\tan x+\tan ^2x)\)
\(=4\cot x\tan x=4.1=4\)
e)
\(\frac{\sin ^3a+\cos ^3a}{\sin a+\cos a}=\frac{(\sin a+\cos a)(\sin ^2a-\sin a\cos a+\cos ^2a)}{\sin a+\cos a}\)
\(=\sin ^2a-\sin a\cos a+\cos ^2a=(\sin ^2a+\cos ^2a)-\sin a\cos a=1-\sin a\cos a\)
Vậy ta có đpcm.
sina.cosa=1 => sina,cosa≠0 => sina+cosa≠0
\(P=\frac{\sin^3a+\cos^3a}{\sin a+\cos a}=\frac{\left(\sin a+\cos a\right).\left(\sin^2a-\sin a.\cos a+\cos^2a\right)}{\sin a+\cos a}\)
\(=\sin^2a+\cos^2a-\sin a.\cos a=1-1=0\)