Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\Leftrightarrow a^3=110+3.\sqrt[3]{55^2-3024}.a\Leftrightarrow a^3=3a+110\)
\(\Rightarrow a^3-3a-110=0\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\Leftrightarrow a=5\)(vì a2+5a+22>0)
Thay a vào P để tính.
Tu \(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\)
\(\Leftrightarrow a^3=110+3\sqrt[3]{55+\sqrt{3024}}\cdot\sqrt[3]{55-\sqrt{3024}}\left(\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\right)\)
\(\Leftrightarrow a^3-3a-110=0\)
\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)(de thay a^2+5a+22>0)
\(\Leftrightarrow a=5\Rightarrow P=\frac{7}{3}\)
Bài 1:
$a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}$
$\Rightarrow a^3=110+3\sqrt[3]{(55+\sqrt{3024})(55-\sqrt{3024})}a$
$\Leftrightarrow a^3=110+3a$
$\Leftrightarrow a^3-3a-110=0$
$\Leftrightarrow a^3-5a^2+5a^2-25a+22a-110=0$
$\Leftrightarrow a^2(a-5)+5a(a-5)+22(a-5)=0$
$\Leftrightarrow (a-5)(a^2+5a+22)=0$
Dễ thấy $a^2+5a+22>0\Rightarrow a-5=0\Rightarrow a=5$
Vậy........
$a=
Bài 2:
Bạn xem tại đây:
Câu hỏi của Nguyễn Huệ Lam - Toán lớp 9 | Học trực tuyến
Hoặc có thể dùng cách chứng minh bằng Vi-et bậc 3 nhưng việc dùng Vi-et bậc 3 có vẻ không phổ biến lắm trong lời giải bài THCS
a) A có nghĩa\(\Leftrightarrow x-y\ne0\Leftrightarrow x\ne y\)
b) \(A=\frac{x+y-2\sqrt{xy}}{x-y}=\frac{\left(\sqrt{x-\sqrt{y}}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
Casio cho kết quả \(\frac{5+\sqrt{21}}{2}\)
Bạn tự lập phương rồi tách ngược là được
\(a.A=\frac{5\sqrt{x}+4}{x+\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}.\)
\(=\frac{5\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(+\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{5\sqrt{x}+4+x-2\sqrt{x}+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=-\frac{1}{\sqrt{x}+2}\)
\(b,4A_{min}\Leftrightarrow A_{min}\Rightarrow\frac{-1}{\sqrt{x}+2}\)nhỏ nhất
\(\frac{\Rightarrow1}{\sqrt{x}+2}\)lớn nhất \(\Leftrightarrow\sqrt{x}+2\)nhỏ nhất
\(\sqrt{x}+2\ge2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\Rightarrow A_{min}=\frac{-1}{0+2}=-\frac{1}{2}\Rightarrow4A_{min}=-1\Leftrightarrow x=0\)