Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời sai là:
(C) Giá trị của Q tại \(x=3\) là \(\dfrac{3-3}{3+3}=0\)
Do ĐKXĐ của phương trình
\(Q=\dfrac{x^2-6x+9}{x^2-9}\) là \(x\ne\pm3\)
a) giải phương trình
\(\dfrac{2x^2-3x-2^{ }}{_{ }x^2-4}\) = 2
=>\(\dfrac{2x^2-3x-2}{x^2-4}\) = \(\dfrac{2\left(x^2-4\right)}{x^2-4}\)
=>2x2 - 3x - 2 = 2(x2 - 4)
<=>2x2 -3x - 2 = 2x2 - 8
<=>2x2 - 2x2 - 3x = -8 + 2
<=>-3x = -6
<=> x = 2
Vậy không tồn tại giá trị nào của x thỏa mãn điều kiện của bài toán
b) Ta phải giải phương trình
\(\dfrac{6x-1}{3x+2}\) = \(\dfrac{2x+5}{x-3}\)
=>x = \(\dfrac{-7}{38}\)
c) Ta phải giải phương trình
\(\dfrac{y+5}{y-1}\) - \(\dfrac{y+1}{y-3}\) = \(\dfrac{-8}{\left(y-1\right)\left(y+1\right)}\)
không tồn tại giá trị nào của y thỏa mãn điều kiện của bài toán
Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
B3;a,ĐKXĐ:\(x\ne\pm4\)
A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)
Theo bài ra , ta có :
\(P=\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)ĐKXĐ \(x\ne\pm y\)
\(\Leftrightarrow P=\left(\dfrac{x^2}{\left(x-y\right)\left(x+y\right)}+\dfrac{y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)
\(\Leftrightarrow P=\left(\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)
\(\Leftrightarrow P=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\times\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\Leftrightarrow P=\dfrac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)\(\Leftrightarrow P=\dfrac{\left(x^2\right)^2-\left(y^2\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\)(1)
Ta có : \(x+y=5\Rightarrow\left(x+y\right)^2=25\Rightarrow x^2+y^2=25-2xy=25--1=26\)(Vì xy = -1/2)
Thay x2 + y2 = 26 vào (1) ta đk : P = 26
Vậy P = 26 khi x + y = 5 và xy = -1/2
\(P=\left(\dfrac{x^2+y\left(x+y\right)}{\left(x^2-y^2\right)}\right).\left(\dfrac{x^4\left(x-y\right)-y^4\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\\ \)
\(P=\left(\dfrac{x^2+xy+y^2}{\left(x^2-y^2\right)}\right).\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x^2+xy+y^2\right)}\)
\(P=x^2+y^2=\left(x+y\right)^2-2xy=25-2\left(-\dfrac{1}{2}\right)=26\)
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
P=(\(\dfrac{x^2}{x^2-y^2}+\dfrac{y\left(x+y\right)}{x^2-y^2}\)):\(\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)
P=\(\dfrac{X^2+xy+y^2}{x^2-y^2}\).\(\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)
P=x^2+y^2=(x+y)^2-2xy=5^2-(-1)=26
Có: \(P=\dfrac{x^4}{4}-x^2+y^2\)
Thay x = 4; y = 1/2 vào P. ta được:
\(P=\dfrac{4^4}{4}-4^2+\left(\dfrac{1}{2}\right)^2\)
\(=4^3-4^2+\dfrac{1}{4}\)
\(=48+\dfrac{1}{4}=\dfrac{193}{4}\)
Vậy P =\(\dfrac{193}{4}\)tại x = 4; y = 1/2