K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

Xét \(A=\sqrt{5+\sqrt{3}}+\sqrt{5-\sqrt{3}}\)

\(\Rightarrow A^2=10+2\sqrt{22}\Rightarrow A=\sqrt{2}\sqrt{5+\sqrt{22}}\)

\(\dfrac{\sqrt{5+\sqrt{3}}+\sqrt{5-\sqrt{3}}}{\sqrt{5+\sqrt{22}}}+\sqrt{11-6\sqrt{2}}\)

\(=\dfrac{\sqrt{2}\sqrt{5+\sqrt{22}}}{\sqrt{5+\sqrt{22}}}+\sqrt{\left(\sqrt{2}-3\right)^2}\)

\(=\sqrt{2}-\sqrt{2}+3=3\)

b: Ta có: \(B=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\left(x+\sqrt{x}+1+\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}-1}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

20 tháng 8 2021

 

 

26 tháng 7 2018

\(1.\text{ }\dfrac{1}{\sqrt{k}-\sqrt{k+1}}=\dfrac{\left(\sqrt{k}+\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}\\ =-\left(\sqrt{k}+\sqrt{k+1}\right)\\ \Rightarrow\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{8}-\sqrt{9}}\\ =-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...+\left(\sqrt{8}+\sqrt{9}\right)\\ =-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{8}+\sqrt{9}\\ \\ =\sqrt{9}-\sqrt{1}=2\)

\(2.\text{ }\dfrac{1}{\left(k+1\right)\sqrt{k}+\sqrt{k+1}k}=\dfrac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\\ =\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\\ \Rightarrow\text{ }\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{7}}\\ \text{ }1-\dfrac{1}{\sqrt{7}}\)

26 tháng 7 2018

1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}=\dfrac{1+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-\dfrac{\sqrt{4}+\sqrt{5}}{4-5}+\dfrac{\sqrt{5}+\sqrt{6}}{5-6}-\dfrac{\sqrt{6}+\sqrt{7}}{6-7}+\dfrac{\sqrt{7}+\sqrt{8}}{7-8}-\dfrac{\sqrt{8}+\sqrt{9}}{8-9}=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-\sqrt{5}-\sqrt{6}+\sqrt{6}+\sqrt{7}-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}=\sqrt{9}-1=3-1=2\)

16 tháng 10 2022

a: \(=\dfrac{\sqrt{10}}{2}+\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{4}\)

\(=\dfrac{2\sqrt{10}+3\sqrt{2}-\sqrt{10}}{4}=\dfrac{\sqrt{10}+3\sqrt{2}}{4}\)

b: \(\dfrac{3+4\sqrt{3}}{\sqrt{6+2\sqrt{5}}}-\dfrac{2\sqrt{2}\left(\sqrt{3}+1\right)}{2}\)

\(=\dfrac{4\sqrt{3}+3}{\sqrt{5}+1}-\sqrt{2}\left(\sqrt{3}+1\right)\)

\(=\dfrac{\left(4\sqrt{3}+3\right)\left(\sqrt{5}-1\right)}{4}-\dfrac{4\sqrt{2}\left(\sqrt{3}+1\right)}{4}\)

\(=\dfrac{4\sqrt{15}-4\sqrt{3}+3\sqrt{5}-3-4\sqrt{6}-4\sqrt{2}}{4}\)

5 tháng 8 2018

a) \(\dfrac{\sqrt{2}}{\sqrt{3}}+2.\dfrac{\sqrt{3}}{\sqrt{2}}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{\sqrt{2}.\sqrt{2}.\sqrt{3}}{\sqrt{2}}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

b)

\(3\dfrac{\sqrt{2}}{\sqrt{5}}+\dfrac{\sqrt{5}}{\sqrt{2}}-2\sqrt{10}=3\dfrac{\sqrt{2}.\sqrt{5}}{5}+\dfrac{\sqrt{5}.\sqrt{2}}{2}-2\sqrt{10}\)\(=\sqrt{10}.\left[\dfrac{3}{5}+\dfrac{1}{2}-2\right]=\sqrt{10}.\left(-\dfrac{9}{10}\right)=\dfrac{-9\sqrt{10}}{10}\)

c)

\(\dfrac{-\sqrt{3}}{\sqrt{5}}+3.\dfrac{\sqrt{5}}{\sqrt{3}}-4\sqrt{15}=\dfrac{-\sqrt{15}}{5}+3.\dfrac{\sqrt{15}}{3}-4\sqrt{15}=\sqrt{15}.\left(\dfrac{-1}{5}+1-4\right)=\sqrt{15}.\left(-\dfrac{16}{5}\right)=\dfrac{-16\sqrt{15}}{5}\)

d)\(\dfrac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{2\left(\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{5\sqrt{6}}{6}\)

\(=\dfrac{2\left[\left(\sqrt{6}+2\right)+\left(\sqrt{6}-2\right)\right]}{6-4}+\dfrac{5\sqrt{6}}{6}=\left(2\sqrt{6}\right)+\dfrac{5\sqrt{6}}{6}=\dfrac{17\sqrt{6}}{6}\)

Kiểm tra lại nhé ^^

1 tháng 9 2023

a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)

\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)

\(=\sqrt{2}+1-\sqrt{2}+2\)

\(=3\)

b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)

\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)

\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)

\(=-8\sqrt{6}+2\sqrt{6}\)

\(=-6\sqrt{6}\)

c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)

\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)

\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)

\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)

\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)

\(=\left(\sqrt{5}\right)^2-3^2\)

\(=-4\)

1 tháng 9 2023

a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)

\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)

\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)

\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)

\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)

\(=3\)

a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}\)

\(=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)