K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha  \ne {90^o})\)

\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)

\( \Leftrightarrow {\cos ^2}\alpha  = \frac{1}{{10}} \Leftrightarrow \cos \alpha  =  \pm \frac{{\sqrt {10} }}{{10}}\)

Vì \({0^o} < \alpha  < {180^o}\) nên \(\sin \alpha  > 0\).

Mà \(\tan \alpha  = 3 > 0 \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt {10} }}{{10}}\)

Lại có: \(\sin \alpha  = \cos \alpha .\tan \alpha  = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)

\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)

NV
27 tháng 11 2019

Do \(90< a< 180\Rightarrow cosa< 0\Rightarrow tana< 0\Rightarrow\) đề bài sai do tana không thể bằng 3

Nhưng kệ cứ tính thì:

Chia cả tử và mẫu của A cho \(cos^3a\) và lưu ý \(\frac{1}{cos^2a}=1+tan^2a\)

\(A=\frac{tana.\frac{1}{cos^2a}+tan^2a+1}{tan^3a-tana-1}=\frac{tana\left(1+tan^2a\right)+tan^2a+1}{tan^3a-tana-1}\)

Tới đây thay số vào và bấm máy là xong

11 tháng 5 2017

a)\(sin^2\left(180^o-\alpha\right)+tan^2\left(180-\alpha\right).tan^2\left(270^o+\alpha\right)\)\(+sin\left(90^o+\alpha\right)cos\left(\alpha-360^o\right)\)
\(=sin^2\alpha+tan^2\alpha.cot^2\alpha+cos\alpha cos\alpha\)
\(=sin^2\alpha+cos^2\alpha+\left(tan\alpha cot\alpha\right)^2=1+1=2\).

11 tháng 5 2017

\(\dfrac{cos\left(\alpha-180^o\right)}{sin\left(180^o-\alpha\right)}+\dfrac{tan\left(\alpha-180^o\right)cos\left(180^o+\alpha\right)sin\left(270^o+\alpha\right)}{tan\left(270^o+\alpha\right)}\)
\(=\dfrac{cos\left(180^o-\alpha\right)}{sin\left(180^o-\alpha\right)}+\dfrac{-tan\left(180^o-\alpha\right).cos\alpha.sin\left(90^o+\alpha\right)}{-tan\left(90^o+\alpha\right)}\)
\(=tan\left(180^o-\alpha\right)+\dfrac{tan\alpha.cos\alpha.cos\alpha}{cot\alpha}\)
\(=-tan\alpha+tan^2\alpha cos^2\alpha\)
\(=tan\alpha\left(-1+tan\alpha cos^2\alpha\right)\)
\(=tan\alpha\left(sin\alpha cos\alpha-1\right)\).

\(90^0< a< 180^0\)

=>\(cosa< 0\)

\(sin^2a+cos^2a=1\)

=>\(cos^2a+\dfrac{9}{25}=1\)

=>\(cos^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)

mà cosa<0

nên \(cosa=-\dfrac{4}{5}\)

\(tana=\dfrac{sina}{cosa}=\dfrac{3}{5}:\dfrac{-4}{5}=-\dfrac{3}{4}\)

\(A=2\cdot cos^2a-5\cdot tan^2a\)

\(=2\cdot\left(-\dfrac{4}{5}\right)^2-5\cdot\left(-\dfrac{3}{4}\right)^2\)

\(=2\cdot\dfrac{16}{25}-5\cdot\dfrac{9}{16}\)

\(=\dfrac{32}{25}-\dfrac{45}{16}=\dfrac{-613}{400}\)

22 tháng 10 2023

\(90^0< a< 180^0\)

=>\(cosa< 0\)

\(sin^2a+cos^2a=1\)

=>\(cos^2a=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)

mà cosa<0

nên \(cosa=-\dfrac{2\sqrt{2}}{3}\)

\(tan\left(180^0-a\right)=-tana=-\dfrac{sina}{cosa}\)

\(=-\dfrac{1}{3}:\dfrac{-2\sqrt{2}}{3}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\left\{ \begin{array}{l}\sin {100^o} = \sin \left( {{{180}^o} - {{80}^o}} \right) = \sin {80^o}\\\cos {164^o} = \cos \left( {{{180}^o} - {{16}^o}} \right) =  - \cos {16^o}\end{array} \right.\)

\( \Rightarrow \sin {100^o} + \sin {80^o} + \cos {16^o} + \cos {164^o}\)\( = \sin {80^o} + \sin {80^o} + \cos {16^o}-\cos {16^o}\)\( = 2\sin {80^o}.\)

b) 

Ta có:

\(\left\{ \begin{array}{l}\sin \left( {{{180}^o} - \alpha } \right) = \sin \alpha \\\cos \left( {{{180}^o} - \alpha } \right) =  - \cos \alpha \\\tan \left( {{{180}^o} - \alpha } \right) =  - \tan \alpha \\\cot \left( {{{180}^o} - \alpha } \right) =  - \cot \alpha \end{array} \right.\quad ({0^o} < \alpha  < {90^o})\)\( \Rightarrow 2\sin \left( {{{180}^o} - \alpha } \right).\cot \alpha  - \cos \left( {{{180}^o} - \alpha } \right).\tan \alpha .\cot \left( {{{180}^o} - \alpha } \right)\) \( = 2\sin \alpha .\cot \alpha  - \left( { - \cos \alpha } \right).\tan \alpha .\left( { - \cot \alpha } \right)\)\( = 2\sin \alpha .\cot \alpha  - \cos \alpha .\tan \alpha .\cot \alpha \)

\( = 2\sin \alpha .\frac{{\cos \alpha }}{{\sin \alpha }} - \cos \alpha .\left( {\tan \alpha .\cot \alpha } \right)\)\( = 2\cos \alpha  - \cos \alpha .1 = \cos \alpha .\)

10 tháng 12 2022

\(=cosa\cdot sina-1-1+sina\cdot cosa+2\)

\(=2\cdot sina\cdot cosa=sin2a\)

18 tháng 7 2022

a) Vì 90^{\circ}<\alpha<180^{\circ}90<α<180 nên \cos \alpha<0cosα<0 mặt khác \sin ^{2} \alpha+\cos ^{2} \alpha=1sin2α+cos2α=1 suy ra \cos \alpha=-\sqrt{1-\sin ^{2} \alpha}=-\sqrt{1-\dfrac{1}{9}}=-\dfrac{2 \sqrt{2}}{3}cosα=1sin2α=191=322.

Do đó \tan \alpha=\dfrac{\sin \alpha}{\cos \alpha}=\dfrac{\dfrac{1}{3}}{-\dfrac{2 \sqrt{2}}{3}}=-\dfrac{1}{2 \sqrt{2}}tanα=cosαsinα=32231=221.

b) Vì \sin ^{2} \alpha+\cos ^{2} \alpha=1sin2α+cos2α=1 nên \sin \alpha=\sqrt{1-\cos ^{2} \alpha}=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}sinα=1cos2α=194=35 và \cot \alpha=\dfrac{\cos \alpha}{\sin \alpha}=\dfrac{-\dfrac{2}{3}}{\dfrac{\sqrt{5}}{3}}=-\dfrac{2}{\sqrt{5}}cotα=sinαcosα=3532=52.

c) Vì \tan \gamma=-2 \sqrt{2}<0 \Rightarrow \cos \alpha<0tanγ=22<0cosα<0 mặt khác \tan ^{2} \alpha+1=\dfrac{1}{\cos ^{2} \alpha}tan2α+1=cos2α1 nên \cos \alpha=-\sqrt{\dfrac{1}{\tan ^{2}+1}}=-\sqrt{\dfrac{1}{8+1}}=-\dfrac{1}{3}cosα=tan2+11=8+11=31.
Ta có \tan \alpha=\dfrac{\sin \alpha}{\cos \alpha} \Rightarrow \sin \alpha=\tan \alpha \cdot \cos \alpha=-2 \sqrt{2} \cdot\left(-\dfrac{1}{3}\right)=\dfrac{2 \sqrt{2}}{3}tanα=cosαsinαsinα=tanαcosα=22(31)=322 \Rightarrow \cot \alpha=\dfrac{\cos \alpha}{\sin \alpha}=\dfrac{-\dfrac{1}{3}}{\dfrac{2 \sqrt{2}}{3}}=-\dfrac{1}{2 \sqrt{2}}cotα=sinαcosα=32231=221.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) 

Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)

Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.

 

Ta có: tam giác vuông OHM vuông tại H và \(\alpha  = \widehat {xOM}\)

Do đó: \(\sin \alpha  = \frac{{MH}}{{OM}} = MH;\;\cos \alpha  = \frac{{OH}}{{OM}} = OH.\)

\( \Rightarrow {\cos ^2}\alpha  + {\sin ^2}\alpha  = O{H^2} + M{H^2} = O{M^2} = 1\)

b) Ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)

c) Với \(\alpha  \ne {90^o}\) ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)

d) Ta có:

\(\begin{array}{l}\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)

24 tháng 9 2023

Tham khảo:

a) 

Gọi M(x;y) là điểm trên đường tròn đơn vị sao cho \(\widehat {xOM} = \alpha \). Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Ta có: \(\left\{ \begin{array}{l}x = \cos \alpha \\y = \sin \alpha \end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}\alpha  = {x^2}\\{\sin ^2}\alpha  = {y^2}\end{array} \right.\)(1)

Mà \(\left\{ \begin{array}{l}\left| x \right| = ON\\\left| y \right| = OP = MN\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x^2} = {\left| x \right|^2} = O{N^2}\\{y^2} = {\left| y \right|^2} = M{N^2}\end{array} \right.\)(2)

Từ (1) và (2) suy ra \({\sin ^2}\alpha  + {\cos ^2}\alpha  = O{N^2} + M{N^2} = O{M^2}\) (do \(\Delta OMN\) vuông tại N)

\( \Rightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) (vì OM =1). (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

b) 

Ta có:  \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}\;\;(\alpha  \ne {90^o})\)

\( \Rightarrow 1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}\)

Mà theo ý a) ta có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) với mọi góc \(\alpha \)

\( \Rightarrow 1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\) (đpcm)

c) 

Ta có:  \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}\;\;\;({0^o} < \alpha  < {180^o})\)

\( \Rightarrow 1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\)

Mà theo ý a) ta có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) với mọi góc \(\alpha \)

\( \Rightarrow 1 + {\cot ^2}\alpha  = \frac{1}{{{{\sin }^2}\alpha }}\) (đpcm)