Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
Câu 1.
B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )
= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2
= 18x2 + 18x + 3
| x | = 2 => x = ±2
Với x = 2 => B = 18.22 + 18.2 + 3 = 111
Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39
C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )
= 4x2 + 4xy + y2 + xy - xz - y2 + yz
= 4x2 + 5xy - xz + yz
Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9
Câu 2.
Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )
Theo đề bài ta có :
( a + 1 )( a + 2 ) - a( a + 1 ) = 50
<=> a2 + 3a + 2 - a2 - a = 50
<=> 2a + 2 = 50
<=> 2a = 48
<=> a = 24 ( tmđk )
=> a + 1 = 25 ; a + 2 = 26
Vậy ba số cần tìm là 24 ; 25 ; 26
Câu 3.
Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4
( x + y )( x3 - x2y + xy2 - y3 )
= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4
= x4 - y4 ( đpcm )
Câu 1 :
\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)
\(=18x^2-4x-7\)
Với \(|x|=2\Rightarrow x=\pm2\)
Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)
Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)
Câu b tương tự
Câu 2 :
Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .
Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)
\(\Leftrightarrow2a=48\)
\(\Leftrightarrow a=24\)
Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .
Câu 3 :
Ta có :
\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)
\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)
\(=x^4-y^4\)
=> đpcm
\(B=\frac{x+y+x}{x+7}+\frac{2\left(x+y\right)+y}{y+14}\)
\(=\frac{x+7}{x+7}+\frac{y+14}{y+14}\)
=1+1=2
Câu a xem lại đề :))
a) P = 2x2 - x4 + 2
= -x4 + 2x2 + 2
Đặt t = x2 ( t ≥ 0 )
Khi đó P trở thành :
-t2 + 2t + 2
= -t2 + 2t - 1 + 3
= -( t2 - 2t + 1 ) + 3
= -( t - 1 )2 + 3
( t - 1 )2 ≥ 0 ∀ x => -( t - 1 )2 ≤ 0 ∀ x
=> -( t - 1 ) + 3 ≤ 3 ∀ x
Dấu bằng xảy ra <=> t - 1 = 0 => t = 1 ( tmđk )
Với t = 1 => x2 = 1
=> x = ±1
Vậy PMax = 3 với x = ±1
b) Q = x - x2
= -x2 + x
= -( x2 - x )
= -[ x2 - 2.1/2x + (1/2)2 ] + 1/4
= -( x - 1/2 )2 + 1/4
( x - 1/2 )2 ≥ 0 ∀ x => -( x - 1/2 )2 ≤ 0 ∀ x
=> -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x
Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy QMax = 1/4 khi x = 1/2
c) M = 2x - x2 - 2020
= -x2 + 2x - 2020
= -x2 + 2x - 1 - 2019
= -( x2 - 2x + 1 ) - 2019
= -( x - 1 )2 - 2019
( x - 1 )2 ≥ 0 ∀ x => -( x - 1 )2 ≤ 0 ∀ x
=> -( x - 1 )2 - 2019 ≤ -2019 ∀ x
Dấu bằng xảy ra <=> x - 1 = 0 => x = 1
Vậy MMax = -2019 khi x = 1
d) N = 2x - 2x2 - 3
= -2x2 + 2x - 3
= -2( x2 - x + 1/4 ) - 5/2
= -2( x - 1/2 )2 - 5/2
( x - 1/2 )2 ≥ 0 ∀ x => -2( x - 1/2 )2 ≤ 0 ∀ x
=> -2( x - 1/2 )2 - 5/2 ≤ -5/2 ∀ x
Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy NMax = -5/2 khi x = 1/2
1) \(x-2y=3\Rightarrow\hept{\begin{cases}x=3+2y\\y=\frac{x-3}{2}\end{cases}}\)
\(\Rightarrow A=2x\left(x+2y-3\right)-y\left(6x-3y-10\right)+x-7+\left(x-3y\right)^2\)
\(=2x^2+4xy-6x-6xy+3y^2+10y+x-7+x^2-6xy+9y^2\)
\(=3x^2+12y^2-8xy-5x+10y-7\)
\(=3.\left(3+2y\right)^2+12y^2-8\left(3+2y\right).y-5\left(3+2y\right)+10y-7\)
\(=3\left(9+12y+4y^2\right)+12y^2-8\left(3y+2y^2\right)-15-10y+10y-7\)
\(=27+36y+12y^2+12y^2-24y-16y^2-15-10y+10y-7\)
\(=8y^2+12y+5\)
\(M=\left(x^2-2x+1\right)\left(1+2x\right)-\left(x^2+2x+1\right)\left(1-3x\right)-\left(3-6x\right)\left(x^2+3x+2\right)\)
\(=x^2+2x^3-2x-4x^2+1+2x-x^2+3x^8-2x+6x^2-1+3x-3x^2-9x-6+6x^8\)\(+18x^2+12x=11x^3+17x^2+4x-6\)
a)a+b=1
A=(a+b)(a2-ab+b2)+3ab[(a+b)2-2ab]+6a2b2 = a2-ab+b2+3ab(1-2ab)+6a2b2=a2+2ab+b2=(a+b)2=1
b) làm như trên hoặc có cách để tính nhanh
x-y =1
chon x=1;y=0 thay vào ta được B=1