K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

quy đồng lên ta đc \(\dfrac{2^2-1}{2^2}......\dfrac{2017^2-1}{2017^2}\)

khai triển hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)ta đc\(\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.....\dfrac{2016.2018}{2017}\)

=\(\dfrac{1.2.3^2.4^2.....2016^2.2017.2018}{2^2.......2017^2}=\dfrac{1.2018}{2.2017}=\dfrac{1009}{2017}\)

Đề sai rồi bạn

26 tháng 3 2023

cái cuối là \(R\left(2023\right)\) hay 2.2023 vậy bạn ?

Sửa đề: 1/R(2023)

R(3)=1*3

R(4)=2*4

R(5)=3*5

...

R(2022)=2020*2022

R(2023)=2021*2023

=>\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2021\cdot2023}+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{2020\cdot2022}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2020\cdot2022}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{2022}{2023}+\dfrac{505}{1011}\right)\simeq0.7496\)

6 tháng 12 2017

Quy luật có đúng ko vậy bạn

6 tháng 12 2017

u

6 tháng 4 2018

đặt biểu thức đã cho là A

Ta có : \(a^4+\dfrac{1}{4}\) \(=a^4+a^2+\dfrac{1}{4}-a^2\)

\(=\left(a^2+\dfrac{1}{2}\right)^2-a^2\)

\(=\left(a^2+a+\dfrac{1}{2}\right)\left(a^2-a+\dfrac{1}{2}\right)\)

Thay vào biểu thức đã cho ta được:

\(\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)\left(3^2-3+\dfrac{1}{2}\right)...\left(29^2+29+\dfrac{1}{2}\right)\left(29^2-29+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right)\left(4^2+4+\dfrac{1}{2}\right)\left(4^2-4+\dfrac{1}{2}\right)...\left(30^2+30+\dfrac{1}{2}\right)\left(30^2-30+\dfrac{1}{2}\right)}\)

Lại có :

\(\left(k+1\right)^2-\left(k+1\right)+\dfrac{1}{2}\) \(=k^2+2k+1-k-1+\dfrac{1}{2}\)

\(=k^2+k+\dfrac{1}{2}\)

\(\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)\left(2^2+2+\dfrac{1}{2}\right)...\left(29^2+29+\dfrac{1}{2}\right)\left(28^2+28+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(1^2+1+\dfrac{1}{2}\right)\left(4^2+4+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)...\left(30^2+30+\dfrac{1}{2}\right)\left(29^2+29+\dfrac{1}{2}\right)}\)

= \(\dfrac{1^2-1+\dfrac{1}{2}}{30^2+30+\dfrac{1}{2}}\)

= \(\dfrac{\dfrac{1}{2}}{30^2+30+\dfrac{1}{2}}\)

NV
5 tháng 3 2023

Ta có:

\(1-\dfrac{1}{1+2+...+n}=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow S=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{99.102}{100.101}\)

\(=\dfrac{1.2.3...99}{2.3.4...100}.\dfrac{4.5.6...102}{3.4.5...101}=\dfrac{1}{100}.\dfrac{102}{3}=\dfrac{17}{50}\)

5 tháng 3 2023

e cảm ơn thầy ạ!