\(\left(\frac{7^4-7^3}{49^3}\right)^2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

d) 

\(\left(\frac{7^3\left(7-1\right)}{7^6}\right)^2\)

\(=\left(\frac{6}{7^3}\right)^2\)

\(=\frac{6^2}{7^{3^2}}\)

\(=\frac{36}{7^6}\)

30 tháng 7 2018

\(\left(\frac{7^3\left(7-1\right)}{7^6}\right)^2\)

\(=\left(\frac{6}{7^3}\right)^2\)

\(=\left(\frac{6^2}{7^{3^2}}\right)\)

\(=\frac{36}{7^6}\)

Code : Breacker

A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)

A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)

A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)

A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)

A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)

A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)

2

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)

\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)

\(\frac{x-1}{x+1}=\frac{2015}{2017}\)

=>x+1=2017

=>x=2018-1

=>x=2016

Vậy x=2016

Còn bài 3 em ko biết làm em ms lớp 6

Chúc anh học tốt

9 tháng 9 2019

Gửi tạm trước 2 câu !

\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)

9 tháng 9 2019

Trả lời :

\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)

11 tháng 9 2019

a,x=(-1/2)(-2)^3=4

b, x=1/16

11 tháng 9 2019

anh có thể viết phân số ra như này ko ạ:
\(\frac{3}{4}\)

viết như vậy em nhìn rối mắt lắm ạ!

3 tháng 1 2016

x=11

x=1

b= -1

30 tháng 3 2019

2/ Ta có : abcd = (5c + 1 )^2 

Với c = 6 => ( 5c + 1 )^2 = 31^2 = 961 < 1000 

=> c \(\in\left\{7;8;9\right\}\)

Với c = 7 =>( 5c + 1 )^2  = 36^2 = 1296 ( loại ) Vì 9 khác 7 

     c = 8 => ( 5c + 1 )^2  = 41^ 2 = 1681 ( thỏa mãn )

     c = 9 => ( 5c + 1 )^2  = 46^2 = 2116 ( loại ) vì 1 khác 9 

29 tháng 6 2019

1B

2

-) 1/4

-) 4; -4