Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(4-25x^2=0\)
\(\Rightarrow\left(2-5x\right)\left(2+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=2\\5x=-2\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
2) Tính thì phải cho giá trị của x.
\(A=x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
\(=\left[{}\begin{matrix}\left(\dfrac{5}{2}-1\right)^3=\dfrac{27}{8}\\\left(-\dfrac{5}{2}-1\right)^3=-\dfrac{343}{8}\end{matrix}\right.\)
a) Với x = 24
=> x + 1 = 24 (1)
Thay (1) vào A ta được:
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Với x = 31
=> x - 1 = 30 (1)
Thay (1) vào B ta được
\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)
\(B=x^3-x^3+x^2-x^2+x+1\)
\(B=x+1\)
\(B=31+1=32\)
c) Với x = 14
=> x + 1 = 15
x + 2 = 16
2x + 1 = 29
x - 1 = 13
Thay tất cả biểu thức trên vào C ta được
\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(C=-x\)
\(C=-14\)
d) Ta có:
\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)
\(\Rightarrow\left(-2+x^2\right)^5=1\)
\(\Rightarrow-2+x^2=1\)
\(\Rightarrow x^2=1+2=3\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)
x=-24
=>-x=24
=>-x+1=25
thay -x+1=25 vào E ta được:
E=x20+(-x+1)x19+(-x+1)x18+(-x+1)x17+...+(-x+1)x3+(-x+1)x2+(-x+1)x+(-x+1)
=x20-x20+x19-x19+x18-x18+x17-...-x4+x3-x3+x2-x2+x-x+1
=1
Vậy với x=-24 thì E=1
x = ‐24
=> ‐ X = 24
=> ‐ X + 1 = 25
thay ‐x+1=25 vào E ta được:
E = x 20 + ﴾‐ x + 1﴿ x 19 + ﴾‐ x + 1﴿ x 18 + ﴾‐ x + 1﴿ x 17 + ... + ﴾‐ x + 1﴿ x 3 + ﴾‐ x + 1 ﴿ x 2 + ﴾‐ x + 1﴿ x + ﴾‐ x + 1﴿
= x 20 ‐x 20 + x 19 ‐x 19 + x 1 8 ‐x 18 + x 17 ‐...‐ x 4 + x 3 ‐x 3 + x 2 ‐x 2 + x‐x + 1
= 1
Vậy với x=‐24 thì E=1
Học tốt nha Nguyễn Quang Linh
A= x2-4x+6 = (x-2)2+2 ≥ 2
Dấu "=" xảy ra ⇔ x=2
B = 25x2+10x-3 = (5x+1)2-4 ≥ -4
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5}\)
C = 5-6x+4x2 = \(\left(\dfrac{3}{2}-2x\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
A= 2x^2-4x+ 4+2
A=(x-2)2 + 2
A có giá trị nhỏ nhất khi (x-2)2 =0
x-2 =0
x=2
B, C tự làm :>
Câu 2:
a: ĐKXĐ: \(x\notin\left\{0;2\right\}\)
b: Sửa đề: \(A=\left(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\left(\dfrac{2}{x^2}-\dfrac{x-1}{x}\right)\)
\(=\left(\dfrac{2x-x^2}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{2-x\left(x-1\right)}{x^2}\)
\(=\left(\dfrac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{2-x^2+x}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x^3-2x^2-2x^2+4x+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)\left(x+1\right)}{2\left(x^2+4\right)\cdot x^2}=\dfrac{x+1}{2x}\)
c: Khi x=2024 thì \(A=\dfrac{2024+1}{2\cdot2024}=\dfrac{2025}{4048}\)
Câu 1:
a: \(25x^2\left(x-3y\right)-15\left(3y-x\right)\)
\(=25x^2\left(x-3y\right)+15\left(x-3y\right)\)
\(=\left(x-3y\right)\left(25x^2+15\right)\)
\(=\left(x-3y\right)\cdot5\cdot\left(5x^2+3\right)\)
b: \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=\left(x^4-x^2\right)-\left(4x^2-4\right)\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
x=24 nên x+1=25
C=x^4-x^3(x+1)+x^2(x+1)-x(x+1)+30
=x^4-x^4-x^3+x^3+x^2-x^2-x+30
=-x+30
=30-24
=6