Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)
Thay $x=\dfrac12$ vào $A$, ta được:
\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)
Vậy $A=\dfrac94$ khi $x=\dfrac12$.
b,
\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)
Thay $x=1$ vào $B$, ta được:
\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)
Vậy $B=0$ khi $x=1$.
$Toru$
a) Ta có: \(B=\dfrac{x^2}{5x+25}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)
\(=\dfrac{x^2}{5\left(x+5\right)}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)
\(=\dfrac{x^3}{5x\left(x+5\right)}+\dfrac{10\left(x+5\right)^2}{5x\left(x+5\right)}+\dfrac{250+25x}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+10x^2+100x+250+250+25x}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+10x^2+125x+500}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+5x^2+5x^2+25x+100x+500}{5x\left(x+5\right)}\)
\(=\dfrac{x^2\left(x+5\right)+5x\left(x+5\right)+100\left(x+5\right)}{5x\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x^2+5x+100\right)}{5x\left(x+5\right)}\)
\(=\dfrac{x^2+5x+100}{5x}\)
b) Thay x=-2 vào biểu thức \(B=\dfrac{x^2+5x+100}{5x}\), ta được:
\(B=\dfrac{\left(-2\right)^2+5\cdot\left(-2\right)+100}{-5\cdot2}=\dfrac{4+100-10}{-10}=\dfrac{94}{-10}=-\dfrac{94}{10}=\dfrac{-47}{5}\)
Vậy: Khi x=-2 thì \(B=-\dfrac{47}{5}\)
x7-26x6+27x5-47x4-77x3+50x2+x-24
=x7-25x6-x6+25x5+2x5-50x4+3x4-75x3-2x3+50x2+x-24
= x6(x+(-25))-x5(x-25)+2x4(x-25)+3x3(x-25)
-2x2(x-25)+x-24
Thay x=25 vào biểu thức :
=>25 -24=1
Vậy C=1
a) \(N=x^2-10x+25\)
\(N=x^2-2\cdot5\cdot x+5^2\)
\(N=\left(x-5\right)^2\)
Thay x = 55 vào N ta có:
\(N=\left(55-5\right)^2=2500\)
b) \(P=\dfrac{x^4}{4}-x^2y+y^2\)
\(P=\left(\dfrac{x^2}{2}\right)^2-2\cdot\dfrac{x^2}{2}\cdot y+y^2\)
\(P=\left(\dfrac{x^2}{2}-y\right)^2\)
Thay x = 4 và \(y=\dfrac{1}{2}\) vào P ta có:
\(P=\left(\dfrac{4^2}{2}-\dfrac{1}{2}\right)^2=\dfrac{225}{4}\)
Phần b mình thấy kết quả nó sai b ạ thầy cho mình đáp án là 225/9
a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)
= x³ - 125 - x² + 4 + x³ + x² + 4x
= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)
= 2x³ + 4x - 121
b) Tại x = -2 ta có:
A = 2.(-2)³ + 4.(-2) - 121
= 2.(-8) - 8 - 121
= -16 - 129
= -145
c) x² - 1 = 0
x² = 1
x = -1; x = 1
*) Tại x = -1 ta có:
A = 2.(-1)³ + 4.(-1) - 121
= 2.(-1) - 4 - 121
= -2 - 125
= -127
*) Tại x = 1 ta có:
A = 2.1³ + 4.1 - 121
= 2.1 + 4 - 121
= 2 - 117
= -115
B=x7 - 26x6 + 27x5 - 47x4 - 73x3 + 50x2 + x - 24
= x7 - ( x + 1 ) x6 + ( x +2 )x5 - ( 2x - 3 )x4 - ( 3x - 2 ) x3 + 2x .x2 + x - ( x - 1 )
= x7 - x7 - x6 + x6 + 2x5 - 2x5 + 3x4 - 3x4 + 2x3 + 2x3 + x - x - 1
= 4x3 -1
Thay x = 25
4x3 - 1
= 4. 253 - 1
= 4. 15625 - 1
= 62500 -1 = 62499