\(B=x^3+y^3+xy\)khi \(x+y=\frac{1}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Với x+y=1/3 ta có

B=x3+y3+xy=(x+y)(x2-xy+y2)+xy

=1/3.(x2-xy+y2)+xy 

=1/3.x2-1/3.xy+1/3.y2+xy

= 1/3.x2+2/3.xy+1/3.y2

= 1/3.(x2+2xy+y2) =1/3.(x+y)2=1/3.1/9=1/27

12 tháng 12 2018

\(x+y=\frac{1}{3}\Leftrightarrow\left(x+y\right)^3=\frac{1}{27}\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=\frac{1}{27}\)

\(\Leftrightarrow x^3+y^3+xy.3.\frac{1}{3}=\frac{1}{27}\)

\(\Leftrightarrow x^3+y^3+xy=\frac{1}{27}\)

Do đó \(B=\frac{1}{27}\)

12 tháng 12 2018

Có: x3 + y3 = (x + y)3 - 3xy (x + y)

=> B = x3 + y3 + xy 

         = (x + y)3 - 3xy (x + y) + xy

         = (1/3)3 - 3xy . 1/3 + xy (do x + y =1/3)

         = 1/9 - xy + xy

         = 1/9

24 tháng 7 2017

Ta có \(P=\frac{x^2+y\left(x+y\right)}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}\)

\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^4-y^4\right)}\)\(=\frac{x^2+xy+y^2}{x^2-y^2}:\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}\)

\(=\frac{x^2+xy+y^2}{x^2-y^2}.\frac{\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)\(=x^2+y^2=\left(x+y\right)^2-2xy\)

Thay \(x+y=5;xy=-\frac{1}{2}\Rightarrow P=5^2-2.\left(-\frac{1}{2}\right)=26\)

Vậy P=26

2 tháng 9 2017

X=2007 đúng 100%

9 tháng 8 2019

bạn đặt nhân tử chung là xong bài rồi

14 tháng 12 2018

\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)

Thay x=y=z vào r tính thôi bạn

14 tháng 11 2019

a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)

\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)

\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)

\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)

\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)

b) Ta có: \(x+y=\frac{1}{40}\)

\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)

\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)

\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)

\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)

\(\Rightarrow x^2+y^2=\frac{41}{1600}\)

Vậy \(N=\frac{41}{1600}\)

10 tháng 2 2017

rút gọn P đi

10 tháng 2 2017

26 mk vừa làm xong