Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
\(M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+y+x-2+1\)
\(=1\)
\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y-2\right)+2\)
Ta có : \(x+y-2=0\Rightarrow x+2=-y\)
\(\Rightarrow N=-x^2y-xy^2+2xy+2\)
\(N=-xy\left(x+y-2\right)+2=2\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3=3\)
Ta có \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)
với x=2y, thao vào, ta có A=1/3
với x=-y thay vào không thỏa mãn
^.^
\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
\(\Rightarrow x-2y=0\) vì \(x+y\ne0\)
\(\Leftrightarrow x=2y\Rightarrow A=\frac{2y-y}{2y+y}=\frac{1}{3}\)
\(A=x^2+y^2-xy^2-x^2y+2xy-5\)
\(=\left(x+y\right)^2-xy\left(y+x\right)-5\)
\(=2^2-2xy-5=-\left(2xy+1\right)\)
Trả lời:
\(A=x^2+y^2-x^2y-xy^2+2xy-5\)
\(A=\left(x^2+2xy+y^2\right)-xy.\left(x+y\right)-5\)
\(A=\left(x+y\right)^2-xy.\left(x+y\right)-5\)
\(A=2^2-xy.2-5\)
\(A=4-2xy-5\)
\(A=-1-2xy\)
\(A=-\left(1+2xy\right)\)
Học tốt