\(A=x^2+y^2-x^2y-xy^2+2xy-5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

\(A=x^2+y^2-xy^2-x^2y+2xy-5\)

\(=\left(x+y\right)^2-xy\left(y+x\right)-5\)

\(=2^2-2xy-5=-\left(2xy+1\right)\)

29 tháng 7 2020

Trả lời:

\(A=x^2+y^2-x^2y-xy^2+2xy-5\)

\(A=\left(x^2+2xy+y^2\right)-xy.\left(x+y\right)-5\)

\(A=\left(x+y\right)^2-xy.\left(x+y\right)-5\)

\(A=2^2-xy.2-5\)

\(A=4-2xy-5\)

\(A=-1-2xy\)

\(A=-\left(1+2xy\right)\)

Học tốt 

6 tháng 7 2018

tích đúng mình làm cho

6 tháng 7 2018

là sao ạk
giải giùm mình với ạk

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt

9 tháng 8 2019

bạn đặt nhân tử chung là xong bài rồi

11 tháng 7 2016

\(M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+y+x-2+1\)

     \(=1\)

\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y-2\right)+2\)

Ta có : \(x+y-2=0\Rightarrow x+2=-y\)

\(\Rightarrow N=-x^2y-xy^2+2xy+2\)

     \(N=-xy\left(x+y-2\right)+2=2\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3=3\)

17 tháng 8 2018

Ta có \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)

với x=2y, thao vào, ta có A=1/3

với x=-y thay vào không thỏa mãn 

^.^

17 tháng 8 2018

\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\) 

\(\Rightarrow x-2y=0\) vì \(x+y\ne0\)

\(\Leftrightarrow x=2y\Rightarrow A=\frac{2y-y}{2y+y}=\frac{1}{3}\)