Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a3 - a2b + ab2 - 6b3 = 0
<=> a3 + a2b + 3ab2 - 2a2b - 2ab2 - 6b3 = 0
<=> a( a2 + ab + 3b2 ) - 2b( a2 + ab +3b2 ) = 0
<=> ( a2 + ab + 3b2 ).( a - 2b ) = 0
=> a2 + ab + 3b2 = 0 (1) hoặc a - 2b = 0 (2)
Giải (1) : a2 + ab + 3b2 = 0
Vì a > b > 0 => a2 + ab + 3b2 khác 0
=> a2 + ab + 3b2 = 0 ( vô nghiệm )
Giải (2) : a - 2b = 0 <=> a = 2b thay vào D :
=> D = ( 16b4 - 4b4 )/( b4 - 64b4 )
=> D = 12b4/-63b4
=> D = -4/21
\(\frac{a^3}{b^3}-\frac{a^2}{b^2}+\frac{a}{b}-6=0.\) " (chia 2 vế cho b^3)
\(t^3-t^2+t-6=0\) " đăt a/b=t
từ đây bạn có thể dễ dàng tìm được t
mình chỉ gợi ý đến đây thôi
v~ ~ ~ vừa thi hả,tưởng có đáp án r
\(HPT\Leftrightarrow\hept{\begin{cases}3a^2b-b^3=-1\left(1\right)\\3ab^2-a^3=-2\left(2\right)\end{cases}}\)lần lượt bình phương hai phương trình rồi cộng lại ta được :
\(\left(3a^2b-b^3\right)^2+\left(3ab^2-a^3\right)^2=5\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=5\)( bung màu là thấy liền hà )
\(\Leftrightarrow a^2+b^2=\sqrt[3]{5}\)
ta có : \(a^3+2b^2-4b+3=0\)
\(\Leftrightarrow a^3=-2\left(b-1\right)^2-1\le-1\Rightarrow a^3\le-1\Rightarrow a^2\ge1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge1\\a^2b^2\ge b^2\end{cases}}\)\(\Rightarrow a^2+a^2b^2-2b\ge1+b^2-2b\Rightarrow\left(b-1\right)^2\le0\)
mà \(\left(b-1\right)^2\)luôn \(\ge0\forall b\in Q\)
dấu ''='' xảy ra <=> \(b-1=0\Rightarrow b=1\)
sau đó em chỉ cần thay b=1 vào pt ban đầu :
rồi => a = ... sau đó lấy a2+b2=...
Có: \(4=\left(a+b\right)^2-\left(b-1\right)^2\le\left(a+b\right)^2\)\(\Rightarrow\)\(a+b\ge2\)
\(P=\frac{\frac{a^4}{a}+\frac{b^4}{b}}{ab}\ge\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab}\ge\frac{\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{a+b}}{ab}=\frac{\left(a+b\right)\left(a+b\right)^2}{4ab}\ge\frac{2\left(2\sqrt{ab}\right)^2}{4ab}=2\)
"=" \(\Leftrightarrow\)\(a=b=1\)
(1)^2=> a^2+b^2+c^2+2ab+2bc+2ac=0
=> ab+bc+ac=-2
(...)^2=4
(ab)^2+(bc)^2+(ac)^2=4
(2)^2=>A+2(ab)^2+2(bc)^2+2(ac)^2=16
A=16-4=12
nhầm giờ mới có máy tính
\(\left(a^2+b^2+c^2\right)^2=A+2\left(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right)=16\)
\(A=16-2.4=8\)
Ta có :
\(\left\{{}\begin{matrix}a^3-3ab^2=233\\b^3-3a^2b=2010\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a^3-3ab^2\right)^2=233^2\\\left(b^3-3a^2b\right)^2=2010^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^6-6a^4b^2+9a^2b^4=233^2\\b^6-6a^2b^4+9a^4b^2=2010^2\end{matrix}\right.\)
\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=233^2+2010^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=4094389\)
\(\Leftrightarrow a^2+b^2=159,97...\)
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>a=-b hoặc a=-c hoặc b=-c (1)
=>a=1 hoăc b=1 hoặc c=1 (2)
từ 1 và 2 => Q=1
Áp dụng bất đăng thức Holder, ta có
\(\Sigma_{cyc} a \sqrt[3]{b^2+c^2} = \Sigma_{cyc} \sqrt[3]{a.a^2.(b^2+c^2)} \le \sqrt[3]{( \Sigma_{cyc} a).(\Sigma_{cyc} a^2).[\Sigma_{cyc} (b^2+c^2)} \le \sqrt[3]{\sqrt{3\Sigma_{cyc} a^2}.(\Sigma_{cyc} a^2).(2\Sigma_{cyc} a^2}) \le 12\)
Theo bài ra ta có :
\(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)
\(=233^2+2010^2\)
\(\Rightarrow\left(a^2+b^2\right)^3=4094389\)
\(\Rightarrow a^2+b^2=\sqrt[3]{4094389}\)
gửi câu hỏi rồi tự trả lời luôn (tự kỉ) à ?