Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+3^9.2^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\\ =\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-6^{12}-6^{11}}=\dfrac{2^{12}.3^{10}\left(1+5\right)}{6^{11}\left(-6-1\right)}=\dfrac{2^{12}.3^{10}.6}{6^{11}.-7}=\dfrac{2^{12}.3^{10}.2.3}{6^{11}.-7}\\ =\dfrac{2^{13}.3^{11}}{6^{11}.-7}=\dfrac{2^{11}.3^{11}.2^2}{6^{11}.-7}=\dfrac{6^{11}.4}{6^{11}.-7}=-\dfrac{4}{7}\)
D=4^6.9^5+6^9.120/-8^4.3^12-6^11
= 2^12.3^10+6^10.20/(-2)^12.3^12-6^11
= 20/3^2.6=10/27
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)= 0
ta có : \(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\dfrac{4\left(4^5.9^5+5.6^{10}\right)}{-2^{12}.3^{12}-6^{11}}=\dfrac{4\left(2^{10}.3^{10}+5.6^{10}\right)}{-2^{12}.3^{12}-6^{11}}\)
\(=\dfrac{4\left(6^{10}+5.6^{10}\right)}{-6^{12}-6^{11}}=\dfrac{4.6^{11}}{-6^{11}\left(6+1\right)}=-\dfrac{4}{7}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{-2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot\left(2\cdot3-1\right)}=\dfrac{-2}{3}\)
\(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)
\(=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}+\left(2.3\right)^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}\left(1+5\right)}{-6^{12}+6^{11}}\)
\(=\dfrac{2^{12}.3^{10}.6}{6^{11}-6^{12}}\)
\(=\dfrac{2^{12}.3^{10}.2.3}{6^{11}\left(1-6\right)}\)\(=\dfrac{2^{13}.3^{11}}{6^{11}.\left(-5\right)}\) \(=\dfrac{2^{11}.3^{11}.2^2}{6^{11}.\left(-5\right)}=\dfrac{6^{11}.4}{6^{11}.\left(-5\right)}=\dfrac{4}{-5}=-\dfrac{4}{5}\)
bài này mk làm ròi ak, tại do lỗi trang wed nên mới bị đăng lên
\(=\dfrac{5^3\left(2^3+2+1\right)}{55}-\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=5^2-\dfrac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=25-\dfrac{2}{3}\cdot\dfrac{6}{5}\)
=25-4/5
=24,2
\(B=-\dfrac{2^{12}\cdot3^{10}+2^9\cdot2^3\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=-\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)