Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có x=y-1=>x-y=(1)
a)M=7(x-y)+4a(x-y)+4
Thay (1) vào ta được: M=7.1+4a.1+4=4a+11
b)N=x(x^2+y^2-2)-y(x^2+y^2-2)-3y+3y+x^2+y^2+3
N=x(x^2+y^2-2)-y(x^2+y^2-2)+(x^2+y^2-2)+5
N=(x-y+1)(x^2+y^2-2)+5
Thay vào ...(xem lại đề bài đi bạn ơi)
k nha
a. \(T=1+x+x^2+...+x^{1999}\)
\(\Rightarrow Tx=x+x^2+x^3+...+x^{2000}\)
\(\Rightarrow H=Tx-T=x^{2000}-1\)
b) \(T=2\left(x^4-y^4+x^2+y^2+3y^2\right)\)
\(=2\left(\left(x^4+x^2y^2\right)-y^4+3y^2\right)\)\(=2\left(x^2\left(x^2+y^2\right)-y^4+3y^2\right)\)
\(=2\left(x^2-y^4+3y^2\right)\)
\(=2\left(\left(x^2+y^2\right)-y^4+2y^2\right)\)
\(=2\left(1-y^4+2y^2\right)\)
Tính được đến đây thôi nhé! Dù sao biểu thức T vẫn phụ thuộc ẩn.
\(A=3x^3-6x^2+2\left|x\right|+7\) với \(x=-\frac{1}{3}\)
Thay \(x=-\frac{1}{3}\) vào A, ta có:
\(A=3.\left(-\frac{1}{3}\right)^3-6.\left(-\frac{1}{3}\right)^2+2.\left|-\frac{1}{3}\right|+7\)
\(A=\left(-\frac{1}{9}\right)-\frac{2}{3}+\frac{2}{3}+7\)
\(A=\frac{62}{9}\)
\(B=4\left|x\right|-2\left|y\right|\) với \(x=\frac{1}{4};y=-2\)
\(B=4.\left|\frac{1}{4}\right|-2.\left|-2\right|\)
\(B=1-4\)
\(B=-3\)
dùng hằng đẳng thức nhé bạn
\(N=2x^4+4x^2y^2+2y^4-y^4-x^2y^2+y^2\)
\(N=2\left(x^4+2x^2y^2+y^4\right)-y^2\left(x^2+y^2\right)+y^2\)
\(N=2\left(x^2+y^2\right)^2-y^2\left(x^2+y^2\right)+y^2\)
mà ta có: \(x^2+y^2=1\)
\(\Rightarrow N=2-y^2+y^2=2\)
chúc bạn học tốt
a, \(C=6x^2-3x^2+2\left|x\right|+4\)
\(C=6\cdot\left(-\frac{2}{3}\right)^2-3\left(-\frac{2}{3}\right)^2+2\left|-\frac{2}{3}\right|+4\)
\(C=\left(-\frac{2}{3}\right)^2\left(6-3\right)+\frac{4}{3}+4\)
\(C=\frac{4}{9}\cdot3+\frac{4}{3}+4\)
\(C=\frac{4}{3}+\frac{4}{3}+4\)
\(C=\frac{8}{3}+4\)
\(C=\frac{20}{3}\)
b, \(D=2\left|x\right|-3\left|y\right|\)
\(D=2\left|\frac{1}{2}\right|-3\left|-3\right|\)
\(D=2\cdot\frac{1}{2}-3\cdot3\)
\(D=1-9\)
\(D=-8\)