Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
\(B=x^6-20x^5-20x^4-20x^3-2x^2-20x+3\)
\(B=x^6-21x^5+x^5-21x^4+x^4-21x^3+x^3-21x^2+19x^2-20x+3\)
\(B=x^5\left(x-21\right)+x^4\left(x-21\right)+x^3\left(x-21\right)+x^2\left(x-21\right)+19x^2-20x+3\)
Do \(x=21\) nên \(\left(x-21\right)\left(x^5+x^4+x^3+x^2\right)=0\)
=> \(B=19.21^2-20.21+3=7962\)
VẬY \(B=7962\)
\(a)\)
\(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(4x-6\right)+xy\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-3\right)+\left(2x-3\right)^2+xy\)
\(=\left(2x+3-2x+3\right)^2+xy\)
\(=6^2+2\left(-1\right)\)
\(=36-2\)
\(=34\)
\(b)\)
\(\left(x-2\right)^2-\left(x-1\right)\left(x+1\right)-x\left(1-x\right)\)
\(=x^2-4x+4-x^2+1-x+x^2\)
\(=x^2-5x+5\)
Thay \(x=-2\)vào ta có:
\(\left(-2\right)^2-5\left(-2\right)+5\)
\(=4+10+5\)
\(=19\)
\(a)\)
\(21\left(x+3\right)^3:\left(3x+9\right)^2\)
\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)
\(=7\left(x+3\right):3\)
Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)
\(b)\)
Thay vào ta được:
\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)
\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)
\(=1^4:\left(1^3.1\right)\)
\(=1:1\)
\(=1\)
\(c)\)
Thay vào ta được:
\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)
\(=-6.10.7\)
\(=-420\)
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
\(x^3-x=6\)
\(\Rightarrow x.\left(x^2-1\right)=6\)
\(\Rightarrow x.\left(x-1\right).\left(x+1\right)=6\)
\(x^6-2x^4+x^3+x^2-x\)
\(=x^6-x^5+x^5-x^4-x^4+x^3+x^2-x\)
\(=x^5.\left(x-1\right)+x^4.\left(x-1\right)-x^3.\left(x-1\right)+x.\left(x-1\right)\)
\(=\left(x-1\right).\left(x^5+x^4-x^3+x\right)\)
\(=\left(x-1\right).[x^4.\left(x+1\right)-x.\left(x^2-1\right)]\)
\(=\left(x-1\right).\left(x+1\right).[x^4-x.\left(x-1\right)]\)
\(=\left(x-1\right).\left(x+1\right).\left(x^4-x^2+x\right)\)
\(=x.\left(x-1\right).\left(x+1\right).\left(x^3-x+1\right)\)
\(=6.\left(6+1\right)\)
\(=42\)
Vậy giá trị của biểu thức \(B=42\)khi \(x^3-x=6\)