Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem ở : http://d.violet.vn/uploads/resources/51/286225/preview.swf
a. => \(a^2-20a+100=b^2-20b+100\)
\(\Leftrightarrow\left(a-10\right)^2=\left(b-10\right)^2\)Vì a khác b => a-10 khác b-10
=> a-10=10-b
=> a+b=20
Hoặc đơn giản hơn là:
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=20\left(a-b\right)\)vì a khác b => a+b=20
b. => a=20-b
=> b2+40-20b=11
\(\Rightarrow b=10+\sqrt{71}\Rightarrow a=10-\sqrt{71}\)=> a^3 + b^3=..
Tương tự với \(b=10-\sqrt{71}\)
\(a^2-b^2-c^2-2bc-2ac-2ab\)
\(=>a^2-b^2-c^2-2\left(bc+ac+ab\right)\)
\(=\left(a+b+c\right)^2\)
\(=10^2=100\)
Ủng hộ mik nha thanks nhiều
a) ta có 4p(p-a)=2(a+b+c){(a+b+c)/2}=(a+b+c)(a+b+c)=b2+2bc+c2+a2(đpcm)
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)
Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
...
\(.\)M= bn ghi lại đề nha ^.^
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)
k cho mình nha bn thanks nhìu <3 <3 (^3^)
2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)
Đặt \(x^2+5x+4=t\)
(1) = \(t.\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-25\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)(2)
Thay \(t=x^2+5x+4\)vào (2) ta có:
(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
k mình nha bn <3 thanks
Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow1+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=-\frac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Thay vào ta được:
\(A=a^4+b^4+c^4\)
\(A=\left(a^2+b^2+c^2\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(A=1-\frac{1}{2}=\frac{1}{2}\)
Từ \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Vì \(a^2+b^2+c^2=1\)
\(\Rightarrow1+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=-1\)
\(\Leftrightarrow ab+bc+ca=\frac{-1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\left(\frac{-1}{2}\right)^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+b^2ac+c^2ab\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
Vì \(a+b+c=0\)\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Ta có: \(a^2+b^2+c^2=1\)
\(\Rightarrow\left(a^2+b^2+c^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
Vì \(a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
\(\Rightarrow a^4+b^4+c^4+2.\frac{1}{4}=1\)
\(\Leftrightarrow a^4+b^4+c^4+\frac{1}{2}=1\)
\(\Leftrightarrow a^4+b^4+c^4=\frac{1}{2}\)
hay \(A=a^4+b^4+c^4=\frac{1}{2}\)