Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow A=\frac{14}{15}.\frac{20}{21}.\frac{41}{42}.....\frac{209}{210}\)
\(=\frac{4.7}{5.6}.\frac{5.8}{6.7}.\frac{6.9}{7.8}.....\frac{19.22}{20.21}\)
\(=\frac{22}{6}=\frac{11}{3}\)
`Answer:`
\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
\(=\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{6}{6}-\frac{1}{6}\right)\left(\frac{10}{10}-\frac{1}{10}\right)\left(\frac{15}{15}-\frac{1}{15}\right)...\left(\frac{210}{210}-\frac{1}{210}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)
\(=\frac{2.2}{3.2}.\frac{5.2}{6.2}.\frac{9.2}{10.2}...\frac{209.2}{210.2}\)
\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{418}{420}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{19.22}{20.21}\)
\(=\frac{1.4.2.5.3.6...19.22}{2.3.3.4.4.5...20.21}\)
\(=\frac{\left(1.2.3...19\right)\left(4.5.6...22\right)}{\left(2.3.4...20\right)\left(3.4.5...21\right)}\)
\(=\frac{11}{30}\)
a: \(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-1-\dfrac{15}{17}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\left(\dfrac{12}{17}-1-\dfrac{15}{17}\right)+1\)
\(=\dfrac{-20}{17}+1=\dfrac{-3}{17}\)
b: \(B=\dfrac{-5}{3}\cdot16\dfrac{2}{7}-\dfrac{-5}{3}\cdot28\dfrac{2}{7}\)
\(=\dfrac{-5}{3}\left(16+\dfrac{2}{7}-28-\dfrac{2}{7}\right)=\dfrac{-5}{3}\cdot\left(-12\right)=20\)
c: \(C=25\cdot\dfrac{-1}{27}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)
\(=\dfrac{-25}{27}+\dfrac{1}{5}-1\)
\(=\dfrac{-125+27-135}{135}=\dfrac{-233}{135}\)
ta gọi biểu thức trên là B có
2B=2.(\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+....+\(\frac{1}{4950}\))
2B=\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+......+\frac{1}{9900}\)
2B=\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.......+\frac{1}{99.100}\)
2B=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)+.....+\(\frac{1}{99}-\frac{1}{100}\)
2B=\(\frac{1}{3}-\frac{1}{100}\)
2B=\(\frac{100-3}{300}\)
B=\(\frac{97}{300}\): 2
B=\(\frac{97}{300}.\frac{1}{2}\)
B=\(\frac{97}{600}\)
Nhận xét:
\(\frac{1}{k.\left(k+2\right)\left(k+3\right)}=\frac{1}{3}\left[\frac{1}{k\left(k+2\right)}-\frac{1}{\left(k+2\right)\left(k+3\right)}\right]\)
Suy ra:
\(A=\frac{1}{3}\left[\frac{1}{1.3}-\frac{1}{3.5}\right]+\frac{1}{3}\left[\frac{1}{3.5}-\frac{1}{5.7}\right]+...+\frac{1}{3}\left[\frac{1}{17.19}-\frac{1}{19.21}\right]\)
(Bỏ ngoặc vuông và rút gọn các số có dấu trái ngược nhau ta có:
\(A=\frac{1}{3}\left[\frac{1}{1.3}-\frac{1}{19.21}\right]\)
(đến đây bạn tự rút gọn tiếp)
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{9900}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{99.100}\)
\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=2\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(=2.\frac{6}{25}\)
\(=\frac{12}{25}\)