\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\)

\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{9900}\)

\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{99.100}\)

\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)

\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=2\left(\frac{1}{4}-\frac{1}{100}\right)\)

\(=2.\frac{6}{25}\)

\(=\frac{12}{25}\)

22 tháng 1 2017

\(\Rightarrow A=\frac{14}{15}.\frac{20}{21}.\frac{41}{42}.....\frac{209}{210}\)

\(=\frac{4.7}{5.6}.\frac{5.8}{6.7}.\frac{6.9}{7.8}.....\frac{19.22}{20.21}\)

\(=\frac{22}{6}=\frac{11}{3}\)

3 tháng 3 2022

`Answer:`

\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)

\(=\left(\frac{3}{3}-\frac{1}{3}\right)\left(\frac{6}{6}-\frac{1}{6}\right)\left(\frac{10}{10}-\frac{1}{10}\right)\left(\frac{15}{15}-\frac{1}{15}\right)...\left(\frac{210}{210}-\frac{1}{210}\right)\)

\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)

\(=\frac{2.2}{3.2}.\frac{5.2}{6.2}.\frac{9.2}{10.2}...\frac{209.2}{210.2}\)

\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{418}{420}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{19.22}{20.21}\)

\(=\frac{1.4.2.5.3.6...19.22}{2.3.3.4.4.5...20.21}\)

\(=\frac{\left(1.2.3...19\right)\left(4.5.6...22\right)}{\left(2.3.4...20\right)\left(3.4.5...21\right)}\)

\(=\frac{11}{30}\)

a: \(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-1-\dfrac{15}{17}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)

\(=\left(\dfrac{12}{17}-1-\dfrac{15}{17}\right)+1\)

\(=\dfrac{-20}{17}+1=\dfrac{-3}{17}\)

b: \(B=\dfrac{-5}{3}\cdot16\dfrac{2}{7}-\dfrac{-5}{3}\cdot28\dfrac{2}{7}\)

\(=\dfrac{-5}{3}\left(16+\dfrac{2}{7}-28-\dfrac{2}{7}\right)=\dfrac{-5}{3}\cdot\left(-12\right)=20\)

c: \(C=25\cdot\dfrac{-1}{27}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)

\(=\dfrac{-25}{27}+\dfrac{1}{5}-1\)

\(=\dfrac{-125+27-135}{135}=\dfrac{-233}{135}\)

15 tháng 7 2018

ta gọi biểu thức trên là B có 

2B=2.(\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+....+\(\frac{1}{4950}\))

2B=\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+......+\frac{1}{9900}\)

2B=\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.......+\frac{1}{99.100}\)

2B=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)+.....+\(\frac{1}{99}-\frac{1}{100}\)

2B=\(\frac{1}{3}-\frac{1}{100}\)

2B=\(\frac{100-3}{300}\)

B=\(\frac{97}{300}\): 2

B=\(\frac{97}{300}.\frac{1}{2}\)

B=\(\frac{97}{600}\)

15 tháng 7 2018

Ta gọi biểu thức là A

A=1/6 + 1/10 + 1/15 + .... + 1/4950

A=6/12+6/20+6/30+...+6/9900

A=6.(1/3.4 + 1/4.5 + 1/5.6 +.... + 1/99.100 )

A=6.(1/3 - 1/4 +1/4-1/5+1/5-1/6+....+1/99-1/100)

A=6.(1/3-1/100)

A=6.97/300

A=97/50

13 tháng 9 2018

Nhận xét:

\(\frac{1}{k.\left(k+2\right)\left(k+3\right)}=\frac{1}{3}\left[\frac{1}{k\left(k+2\right)}-\frac{1}{\left(k+2\right)\left(k+3\right)}\right]\)

Suy ra:

\(A=\frac{1}{3}\left[\frac{1}{1.3}-\frac{1}{3.5}\right]+\frac{1}{3}\left[\frac{1}{3.5}-\frac{1}{5.7}\right]+...+\frac{1}{3}\left[\frac{1}{17.19}-\frac{1}{19.21}\right]\)

(Bỏ ngoặc vuông và rút gọn các số có dấu trái ngược nhau ta có:

\(A=\frac{1}{3}\left[\frac{1}{1.3}-\frac{1}{19.21}\right]\)

(đến đây bạn tự rút gọn tiếp)